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Abstract

A class of autonomous, even-order ordinary differential equations is discussed from the point of
view of Lie symmetries. It is shown that for a certain power nonlinearity, the Noether symmetry
group coincides with the Lie point symmetry group. First integrals are established and exact
solutions are found. Furthermore, this paper complements, for the one-dimensional case, some
results in the literature of Lie group analysis of poliharmonic equations and Noether symmetries
obtained in the last twenty years. In particular, it is shown that the exceptional negative power
discovered in [Bokhari, A. H., Mahomed, F. M. and Zaman, F. D. (2010) Symmetries and
integrability of a fourth-order Euler-Bernoulli beam equation. J. Math. Phys., 51, 053517] is a
member of a one-parameter family of exceptional powers in which the Lie symmetry group coincides
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1 Introduction

In this paper we consider the equation

y(2n) + f(y) = 0 (1)

from the point of view of Lie group analysis. In (1) and from now on, n is a positive integer, x ∈ R is
an independent variable while y = y(x) is a dependent one and f is a smooth function. Moreover,

y′ :=
dy

dx
, y′′ :=

d2y

dx2
, · · · , y(k) := dky

dxk
, · · ·

Such class of equations includes many important mathematical models for phenomena arising from
Mathematical Physics and Engineering. For instance, when n = 1 and f(y) = ω2y, equation (1) is
the well known harmonic oscillator. Another important equation is given by the celebrated Ermakov
equation

y′′ + λy−3 = 0, (2)

which can physically be interpreted as an oscillator with a nonlinear restoring force acting on it. For
n = 2, equation (1) models the applied load and the deflection in a beam when the acting force
depends on the deflection, see [Han et al. (1999), Bokhari et al.(2010)]. Special cases of equation (1)
are also employed for modeling phenomena in the general relativity and other Physics’ branches,
see [Govinder and Leach (2007)], [Moyo and Leach (2002)], [da Silva (2013a)], [da Silva (2013b)] and
references therein.

For a long time, the investigation of invariance properties of second order ODEs with power
nonlinearities was very intense. In particular, equations of the type

y′′ = f(x)yp,

were widely investigated in [Govinder and Leach (2007)], [Soh and Mahomed (1999)], and, moreover,
such an equation is linked to the general family

y′′ + p(x)y′ + q(x)y = r(x)yp

via Kummer-Liouville transformations, see [Govinder and Leach (2007), Mellin et al. (1991)] and ref-
erences therein for further details.

It is well known that a second order ordinary differential equation does not admit a r−dimensional
symmetry Lie algebra if r ∈ {4, 5, 6, 7} and, moreover, its Lie algebra of symmetries is at most 8(=2+6)
dimensional, see, for instance [Lie (1888), Mahomed and Leach (1989)]. This last case is reached
when, physically, we have the free particle equation or then, the original equation is linearizable
via point transformation, see [Mahomed and Leach (1990), Sarlet et al. (1987)]. Although these last
sentences could suggest that only linear equations can admit an eight-dimensional Lie algebra of
symmetries, it is well known that some nonlinear differential equations also have the same property,
see [Sarlet et al. (1987)] for a better discussion.

An arbitrary n− th order linear ordinary differential equation possesses n+1, n+2, n+3 and the
maximum n+4 symmetries when n ≥ 3 (see, for instance, [Mahomed and Leach (1990)] and references
therein), which shows a substantial difference compared with the one of second order. We also guide the
interested reader to [Mahomed (2007)]’s survey on Lie symmetry analysis of linear ordinary differential
equations for further discussion and extensive bibliography regarding these points.
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An interesting case corresponds to equation (2). Such an equation admits a three-dimensional, un-
solvable, Lie algebra of symmetries isomorphic to sl(2,R), see [Govinder and Leach (2007)]. Although
it is not solvable, using such an algebra is sufficient to reduce (2) to quadratures. Moreover, it is well
known that the Lie symmetries of (2) are also Noether symmetries and, therefore, it is possible to
construct first integrals associated to each symmetry, see, for instance, [da Silva (2013a)].

In a more recent paper, [Bokhari et al.(2010)] considered a fourth-order equation

y′′′′ = f(y),

which is a nonlinear generalization of the static Euler-Bernoulli equation used to describe the relation-
ship between the applied load and the deflection in a beam, see [Han et al. (1999), Bokhari et al.(2010)].

In the mentioned reference the authors carried out a complete group classification of that equation,
as well as they considered its Noether symmetries and from then, first integrals.

Similarly to the second order differential equation, those authors showed that the equation

y′′′′ + λy−
5

3 = 0 (3)

also admits a three-dimensional symmetry Lie algebra, again isomorphic to the classical sl(2,R) Lie
algebra and all Lie symmetries are also Noether symmetries, which was a curious and surprising result,
later discussed in [Fatima et al. (2013)].

In a previous paper ([Freire et al. (2013)], see also [Freire et al. (2012)]) we, jointly with M. Torrisi,
considered the fourth-order equation

y′′′′ + axγyp = 0.

Among other results, we showed that in the nonlinear cases, the maximal symmetry Lie algebra is
achieved when γ = 0 and p = −5/3. This intriguing result motivated us to write the present paper.

In a näıve way, we observe the following:

−3 =
1 + 2× 1

1− 2× 1
, −5

3
=

1 + 2× 2

1− 2× 2
.

This simple observation shows a connection, at least to these two cases, between the order of the
equation 2 = 2 × 1, 4 = 2 × 2 and the exceptional power. We will show, using Noether symmetries,
that for the power

p =
1 + 2n

1− 2n

all Lie point symmetries of the equation

y(2n) + λyp = 0, λ 6= 0,

are Noether symmetries and, therefore, the mentioned results for (2) and (3) are consequences of our
results.

The paper is as the follows. In the next section we present the main results (theorems 1, 2 and 3), a
preliminary discussion about the purposes of this work and the state of the art regarding these topics.
A revision on some basic facts regarding Lie symmetries and Noether Theorem is done in section 3.
Section 4 presents proofs of some technical results, in order to avoid long and tedious demonstrations
of theorems 1, 2 and 3. Then, in section 5, the complete group classification of equation (1) is carried
out (Theorem 1). Theorems 2 and 3 are proved in section 6. As a consequence, first integrals are
established and some exact and explicit solutions are obtained in section 7. Final comments are
presented next.
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2 Main results and preliminary discussions

In what follows, λ is a real constant. Our first result is given by the following:

Theorem 1. A basis to the Lie point symmetry generators of equation (1), for an arbitrary f = f(y)
and any n ≥ 1, is generated by the vector field

X1 =
∂

∂x
. (4)

For special choices of the function f(y) it is possible to enlarge the Lie point symmetry group. The
additional generators to (4) are:

1. If f(y) = λeαy, λα 6= 0 and n ≥ 1, we have

D1 = x
∂

∂x
− 2n

α

∂

∂y
. (5)

2. If f(y) = λyp, p 6= 0, 1, λ 6= 0 and n ≥ 1, we have

Dp = x
∂

∂x
+

2n

1− p
y
∂

∂y
. (6)

3. If f(y) = λy
1+2n

1−2n , λ 6= 0 and n ≥ 1, we have

X2 = x
∂

∂x
+

2n− 1

2
y
∂

∂y
(7)

and

X3 = x2
∂

∂x
+ (2n− 1)xy

∂

∂y
. (8)

4. If f(y) = λ:

(a) if n > 1, we have

Y1 = x
∂

∂x
+

2n− 1

2

[

y − λ
2n+ 1

2n− 1

x2n

(2n)!

]

∂

∂y
, (9)

Y2 = x2
∂

∂x
+ x

[

(2n − 1)y − λ
x2n

(2n)!

]

∂

∂y
, (10)

Y3 =

(

y − λ
x2n

(2n)!

)

∂

∂y
(11)

and

Zj =
xj

j!

∂

∂y
, 0 ≤ j ≤ 2n − 1. (12)

(b) if n = 1, the additional generators are (9), (10), (11), (12) with j = 0, 1, and

Y4 =

(

xy − λ

2
x3

)

∂

∂x
+

(

y2 − λ

4
x4

)

∂

∂y
, Y5 =

(

y − 3

2
λx2

)

∂

∂x
− λx3

∂

∂y
. (13)
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5. If f(y) = λy,

(a) if n > 1, we have

V1 = y
∂

∂y
(14)

and

Vβ = β(x)
∂

∂y
, (15)

where β is a solution of the linear equation

β(2n) + λβ = 0. (16)

(b) if n = 1, we have (14), (15) and

V2 = sin (2
√
λx)

∂

∂x
+

√
λy cos (2

√
λx)

∂

∂y
, V3 = cos (2

√
λx)

∂

∂x
−

√
λy sin (2

√
λx)

∂

∂y
,

V4 = y sin (
√
λx)

∂

∂x
+

√
λy2 cos (

√
λx)

∂

∂y
, V5 = y cos (

√
λx)

∂

∂x
−

√
λy2 sin (

√
λx)

∂

∂y
.

(17)

Remark 1. We observe that only for the linear cases there is a sensible difference between the values
n = 1 or n > 1.

Remark 2. For p = (1 + 2n)/(1− 2n) the operator (6) coincides with the operator (7).

Remark 3. Although in Theorem 1 we presented the symmetries of the linear cases, in the remaining
of the paper we shall not consider them since we are mainly interested in nonlinear phenomena.
However, we invite the interested reader to consult [Mahomed and Leach (1990), Mahomed (2007)]
for a wider discussion on linear ordinary differential equations and Lie symmetries.

Remark 4. Equation (15) corresponds to a family of 2n Lie point symmetry generators parametrized
by the 2n linearly independent solutions of the equation (16).

Remark 5. The group classification of the case n = 1 could be done by using computational packages,
see, for instance, [Dimas (2004), Dimas (2005)], and this can also be done for a given n. Even
though case n = 1 was already widely considered in the literature, we present it in the paper for sake
of completeness.

Remark 6. The cases considered in Theorem 1 are, in fact, the complete group classification mod-
ulo the equivalence transformations x̄ = a1x + a2, ȳ = b1y + b2, where a1, a2, b1 and b2 are con-
stants such that a1b1 6= 0, and f̄ = (b1/a

2n
1 )f . We, however, will not proceed with further in-

formation on these transformations in this paper once we are interested in understanding the one-
dimensional version of the results obtained in [Svirshchevskii (1993), Bozhkov(2006)]. Moreover, it is
well known that for semilinear equations such as (1), in order to carry out a complete group classifica-
tion, up to equivalence transformations, one must take the functions f as considered in the Theorem
1, see [Bokhari et al.(2010), Bozhkov(2006), Bozhkov and Freire (2008a), Bozhkov and Freire (2010),
Freire et al. (2013), Svirshchevskii (1993)]. They, in fact, arise from a compatibility condition that
will be deduced on section 4.
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Theorem 1 is the one-dimensional version of the group classification carried out by [Svirshchevskii (1993)]
for the poliharmonic equation

(−1)n∆nu+ f(u) = 0. (18)

In (18), ∆ is the Laplacian operator, ∆n = ∆n−1∆, n ∈ N and u = u(x), x ∈ R
k, k ≥ 2. Therefore,

one can consider Theorem 1 as the extension, to the one-dimensional case, of Svirshcheviskii’s results
in early 90’s.

Later, in [Bozhkov(2006)], the Noether symmetries of (18) were studied. In the mentioned reference
it was shown that the Lie point symmetry group the equation (18), with f(u) = up, is a Noether
symmetry group if and only if

p =
k + 2n

k − 2n
. (19)

This case, for the poliharmonic equation (18), corresponds to the largest symmetry Lie algebra
for a nonlinear function f(u) with power nonlinearities. Such value of the power is called critical
exponent. For further details, see [Bozhkov(2005)].

For most cases, the Noether symmetry group is a proper subgroup of the Lie point symmetry
group of the corresponding Euler-Lagrange equations. However, there are some examples in the lit-
erature where both groups coincide. In [Bozhkov(2005)] this fact was firstly discussed. Later, in
[Bozhkov and Mitidieri(2007)], this point was retaken and many examples were analysed. A consid-
erable number of the examples discussed were related with partial differential equations. However,
since that work, more differential equations having the same property have been communicated in the
literature.

For instance, in [Bozhkov and Freire (2008a)], a complete group classification of the semilinear
Kohn-Laplace equations was carried out. For that considered family of equations, when the nonlinear
term is a power nonlinearity with the critical exponent, all Lie point symmetries are Noether symme-
tries and consequently, from Noether theorem, it is possible to find conservation laws for them, see
[Bozhkov and Freire (2011)] and [Bozhkov and Freire (2008b)].

In [Bozhkov and Freire (2010)] it was shown that for certain semilinear equations on manifolds
involving the Laplace-Beltrami operator, the same phenomena occurs, although in that case some
restrictions arise from the scalar curvature of the manifold. In [Freire (2010)] a concrete appli-
cation of those results is done and the reader can compare with the classical approach used in
[Azad and Mustafa (2007)].

In [Bozhkov and Freire (2012a)] the authors studied a family of bidimensional Lane-Emden sys-
tems and, for that family, there is a case in which the Lie and Noether symmetry groups coin-
cide. In the case mentioned the power nonlinearities have a relation that the authors called crit-
ical line. Some other examples of the same property can be found in [Bozhkov and Freire (2012b),
Bozhkov and Gilli Martins (2004a), Bozhkov and Gilli Martins (2004b), Gilli Martins (2002), Cruz (2013),
da Silva (2013a)].

On one hand, it is well known that the Lie symmetries of equation (2) are also Noether symmetries
and the same property also holds for equation (3). On the other hand, if one takes, respectively,
n = k = 1 or k = 1, n = 2, f(u) = up and p as in (19), equation (18) becomes equation (2) and (3),
respectively.

Motivated by these facts, our next result is related with Noether symmetries, which can be stated
as the following:

Theorem 2. The Lie point symmetry generator (6) is a Noether symmetry operator of the equation

y(2n) + λyp = 0, (20)

6



with λ 6= 0, if and only if

p =
1 + 2n

1− 2n
. (21)

We observe that (21) can easily be obtained from (19) taking k = 1, which implies that in this case,
equation (1) inherits similar properties with respect to the Noether symmetries of the poliharmonic
equation (18). In fact, we can formulate another common result, inherited by (1), which can be
announced in the

Theorem 3. All Lie point symmetries of the equation (20), with p given by (21), are Noether sym-
metries.

On one hand, Theorem 3 is the one-dimensional version of analogous Bozhkov’s results concern-
ing equation (18), see [Bozhkov(2006)]. On the other hand, the same theorem generalizes the re-
sults of [Govinder and Leach (2007), Bokhari et al.(2010), Fatima et al. (2013)] for semilinear ODEs
admitting the sl(2,R) symmetry Lie algebra. Therefore, this paper not only extends the results
of [Svirshchevskii (1993), Bozhkov(2006)] to the equation (1), but also generalizes the results of
[Bokhari et al.(2010), Fatima et al. (2013), Freire et al. (2013)] regarding fourth-order equation to an
arbitrary even-order semilinear ODEs.

With respect to the other nonlinear cases, except for the operator (4), all remaining generators are
not Noether symmetries.

3 Lie symmetries and the Noether theorem

Here we present the necessary elements in order to prove Theorem 1. Algebraically speaking, a Lie
point symmetry of an ordinary differential equation is a one-parameter group of C∞-automorphisms
of the plane preserving the set of integrals of the considered equation.

For a wider and deeper discussion on this subject, the reader is encouraged to check references
[Bluman and Kumei(1989), Bluman and Anco(2002), Ibragimov (1985), Ibragimov (1999), Olver (1986)].
These books present the standard construction of the theory. A different viewpoint, more algebraic and
focused on ordinary differential equations, can be found in [Draisma (2011), Oudshoorn and van der Put (2001)].

In what follows, all functions are assumed to be functions on the universal space A of the modern
group analysis, see [Ibragimov (1999), Ibragimov (2007)] and references therein.

3.1 Lie-Bäcklund operators and symmetries

An operator

X = ξ
∂

∂x
+ η

∂

∂y
+

∞
∑

i=1

ζi
∂

∂y(i)
(22)

is called Lie-Bäcklund operator if ξ = ξ(x, y, y′, y′′, · · · ), η = η(x, y, y′, y′′, · · · ) and ζk = D(ζk−1) −
y(k)Dξ, k ≥ 1, where ζ0 := η and

D =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ y′′′

∂

∂y′′
+ · · · (23)

is the total derivative operator. In this case, if (22) is a Lie-Bäcklund operator, it is usually written
in the abbreviated form

X = ξ
∂

∂x
+ η

∂

∂y
(24)
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and the remaining terms are understood. However, sometimes it is useful to consider the p − th
extension of operator (24), given by

X = ξ
∂

∂x
+ η

∂

∂y
+ ζ1

∂

∂y′
+ · · ·+ ζp

∂

∂y(p)
.

Example 1. Operators (6) and (8) are the abbreviated form of the Lie-Bäcklund operators

Dp = x
∂

∂x
+

2n

1− p
y
∂

∂y
+

∞
∑

k=1

2n+ k(p − 1)

1− p
y(k)

∂

∂y(k)
(25)

and

X3 = x2
∂

∂x
+ (2n − 1)xy

∂

∂y
+

∞
∑

k=1

[

(2kn − k2)y(k−1) + (2n − 2k − 1)xy(k)
] ∂

∂y(k)
. (26)

Given an ordinary differential equation F (x, y, y′, · · · , y(n)) = 0, a Lie-Bäcklund operator (24) is
called Lie point symmetry generator if ξ = ξ(x, y), η = η(x, y) and, for a certain function α depending
on x, y and its derivatives, the following identity holds:

XF = αF. (27)

Remark 7. In practical terms, it is not necessary to consider the formal sum (22) to obtain the Lie
point symmetries of a certain equation. In fact, if the investigated equation is of order n, it is enough
to consider the n− th extension of the generator and then apply condition (27), which is called invari-
ance condition. From this constraint, an overdetermined linear system of equations for the coefficients
ξ and η, called determining equations, will arrise. The solutions of this system give the basis of the
Lie point symmetry generators for the considered equation.

Let X be a Lie point symmetry generator of an ordinary differential equation F = 0. The corre-
sponding Lie point symmetry is a local one-parameter group of transformations Tε given by

eεX(x, y) =



x+

∞
∑

j=1

εj

j!
Xjx, y +

∞
∑

j=1

εj

j!
Xjy



 =: (x̄, ȳ),

where ε is taken in a neighbourhood of 0.

3.2 Noether theorem

The formal sum
δ

δy
=

∞
∑

j=0

(−1)jDj ∂

∂y(j)
, (28)

where y(0) := y, D1 := D, D2 := DD, D3 := DDD, · · · , is called Euler-Lagrange operator. For each
Lie-Bäcklund operator (24) one can associate the Noether operator

N = ξ +W
δ

δy′
+

∞
∑

j=1

Dj(W )
δ

δy(j+1)
, (29)

where W := η − y′ξ.
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Example 2. Consider the Lie-Bäcklund operators (4), (7) and (8). Then the Noether operators as-
sociated with them are given, respectively, by

N1 = 1−
∞
∑

k=0

y(k+1) δ

δy(k+1)
, (30)

N2 = x+

∞
∑

k=0

(

2n − 2k − 1

2
y(k) − xy(k+1)

)

δ

δy(k+1)
(31)

and

N3 = x2 +

∞
∑

k=0

[

k(2n − k)y(k−1) + (2n− 2k − 1)xy(k) − x2y(k+1)
] δ

δy(k+1)
. (32)

Ibragimov (see [Ibragimov (1999)], Section 8.4, for further details) proved that the Euler-Lagrange
operator (28), Lie-Bäcklund (24) and the Noether operators (29) satisfy the Noether identity

X +D(ξ) = W
δ

δy
+DN. (33)

An equation F = 0 has variational formulation if there exists a function L ∈ A, called Lagrangian,
such that

F =
δL
δy

.

In this case, equation
δL
δy

= 0 (34)

is called Euler-Lagrange equation.

Example 3. Equation (1) has variational formulation. In fact, consider the Lagrangian

L =
(y(n))2

2
+ F (y), (35)

where F ′ = (−1)nf . Then
δL
δy

= (−1)n
[

y(2n) + f(y)
]

.

Definition 1. An operator (24) is called Noether symmetry operator of the functional

J [u] =

∫

R

L dx,

if XL + LDξ = DA, for a certain potential A ∈ A. If A = 0 then the generator (24) is called
variational symmetry operator, while for A 6= const, it is termed as divergence symmetry operator.

Remark 8. Any Noether symmetry is a Lie point symmetry of the corresponding Euler-Lagrange equa-
tion, see [Ibragimov (1999), Olver (1986)]. The potential A, also called gauge, arise from contribution
of boundary terms. For further details on Noether symmetries, see [Ibragimov (1999), Olver (1986)].
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Noether’s theorem can now be formulated for ordinary differential equations:

Theorem 4. (Noether theorem)

For any Noether symmetry (24) of the Euler-Lagrange equation (34), the quantity

I = N(L)−A, (36)

called first integral, is conserved on the solutions of (34).

Proof. Applying the Noether identity to the Lagrangian L, we have

XL+ LD(ξ) = W
δL
δy

+DN(L).

On one hand, since X is a Noether symmetry, there exists a function A ∈ A, eventually 0, such
that XL + LD(ξ) = DA. On the other hand, on the solutions of the Euler-Lagrange equation (34),
one can write D(A) = XL+LD(ξ) = DN(L), or D(N(L)−A) = 0. Defining I by (36), we can easily
see that DI = 0 on the solutions of (35), that is, I is a first integral, or a conserved quantity, of the
Euler-Lagrange equation.

We would like to recall that constants are trivial first integrals of any equation. Therefore, two
first integrals are equivalent if they differ by a constant.

To finish this section, we write (36) explicitly, assuming that L = L(x, y, y′, · · · , yn):

I = ξL+ (η − y′ξ)
δL
δy′

+

n−1
∑

j=1

Dj(η − y′ξ)
δL

δy(j+1)
−A. (37)

4 Auxiliary results

In this section we prove some technical results that will be useful to prove the main statements of
this paper regarding the case n > 1. Therefore, in the whole section it is presupposed this hypothesis.
Although technically a crucial section, the reading of this part can be avoided and we believe that the
interested reader could omit it while reading the paper. In fact, the reader can directly go to section
5 and, once one of the results here presented is invoked, one can only consult the requested point.

However, for those who appreciate technical results or enjoy some manipulation, we begin with

Lemma 1. Let (24) be a Lie point symmetry generator of (1). Then its 2n− th extension is given by

X = ξ(x)
∂

∂x
+ [α(x)y + β(x)]

∂

∂y
+

2n
∑

j=1

ζj
∂

∂y(j)
, (38)

where

ζp = β(p) + α(p)y +

p
∑

j=1

[(

p

j

)

α(p−j) −
(

p

j − 1

)

ξ(p−j+1)

]

y(j). (39)

Proof. From [Bluman(1990)], it follows that ξ = ξ(x) and η = α(x)y+β(x), for certain functions ξ, α
and β of x. Substituting these expressions into

ζk = D(ζk−1)− y(k)Dξ (40)

and using induction over k, we can easily conclude (39).
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Lemma 2. The determining equations of (1) are

λ = α− 2nξ′, (41)
(

2n

k

)

α(2n−k) −
(

2n

k − 1

)

ξ(2n−k+1) = 0, 1 ≤ k < 2n, (42)

(αy + β)f ′(y) + β(2n) + α(2n)y = λf(y). (43)

Proof. Let (24) be a Lie point symmetry generator of (1). By Lemma 1, X takes the form

X = ξ(x)
∂

∂x
+ [α(x)y + β(x)]

∂

∂y
.

From the same Lemma, its 2n − th extension is given by (38), whose remaining coefficients are
given by (39). From the invariance condition (27) we can write

(α(x)y + β(x))f ′(y) + ζ2n = λ(y(2n) + f(y)). (44)

From (39) we can conclude that

ζ2n = β(2n) + α(2n)y +

2n
∑

j=1

[(

2n

j

)

α(2n−j) −
(

2n

j − 1

)

ξ(2n−j+1)

]

y(j). (45)

Substituting (45) into (44), from the coefficient of the terms without derivatives, equation (43) is
obtained. Equation (42) is obtained from the coefficient of y(2n), while (41) comes from the remaining
coefficients of y(k), 1 ≤ k < 2n.

Lemma 3. Equations (41)− (43) are equivalent to

ξ = a1x
2 + a2x+ a3, (46)

α =
2n − 1

2
(2a1x+ a2) + k1 (47)

and
[

2n− 1

2
(2a1x+ a2) + k1

]

yf ′(y) + β(x)f ′(y) + β(2n)(x) +

[

2n+ 1

2
(2a1x+ a2)− k1

]

f(y) = 0. (48)

Proof. From (42) with k = 2n − 1 and k = 2n − 2, we conclude that ξ′′′ = 0, which is equivalent to
(46). Again, from (42) with k = 2n− 1, we conclude that α is given by (47). Then, substituting these
expressions to α and ξ into (41) and next, into (43), we arrive at (48).

Remark 9. We mentioned in Remark 6 that the functions listed in Theorem 1 arise from a com-
patibility condition. Such a condition is given by (48) and it is similar to that one obtained by
[Svirshchevskii (1993)] in his group classification work regarding equation (18), as well as in other
works related with group classification of semilinear equations, see [Bokhari et al.(2010), Bozhkov(2006),
Bozhkov and Freire (2008a), Bozhkov and Freire (2010), Freire et al. (2013), Svirshchevskii (1993)].
Therefore, the problem of finding the functions that can enlarge the symmetry groups was already con-
sidered in the precedent works. Then in this paper we restrict ourselves to those functions considered in
[Bokhari et al.(2010), Bozhkov(2006), Bozhkov and Freire (2008a), Bozhkov and Freire (2010), Freire et al. (2013),
Svirshchevskii (1993)].
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5 Group classification

Here we prove Theorem 1.

5.1 Case n = 1

Let (24) be a Lie point symmetry generator of equation

y′′ + f(y) = 0. (49)

Then, its second extension is given by

X(2) = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ ζ1

∂

∂y′
+ ζ2

∂

∂y′′
,

where

ζ1 = ηx + y′(ηy − ξx)− (y′)2ξy,

ζ2 = ηxx + y′(2ηxy − ξxx)− (y′)2(ηyy − 2ξxy)− (y′)3ξyy + y′′(ηy − 2ξx)− 3y′y′′ξy.

The condition X(2)(y′′ + f(y)) = λ(y′′ + f(y)) reads

ηxx + y′(ηxy − ξxx)− (y′)2(ηyy − 2ξxy)− (y′)3ξyy + y′′(ηy − 2ξx)− 3y′y′′ξy + ηf ′(y) = λ(y′′ + f(y)),

which is equivalent to

ηxx − f(y)(ηy − 2ξx) + f ′(y)η + y′[2ηxy − ξxx + 3f(y)ξy] + (y′)2(ηyy − 2ξxy)− (y′)3ξyy = 0. (50)

From the coefficients of y′, (y′)2 and (y′)3, we conclude, respectively, that 2ηxy−ξxx+3f(y)ξy = 0,
ηyy − 2ξxy = 0 and ξyy = 0. Then, solving the last two equations, we obtain

ξ = a(x)y + b(x), η = a′(x)y2 + c(x)y + d(x). (51)

Substituting (51) into 2ηxy − ξxx − 3f(y)ξy = 0 and the remaining part of (50), we have

2c′(x)− b′′(x) + 3a′′(x)y + 3a(x)f(y) = 0,

d′′(x) + (2b′(x)− c(x))f(y) + d(x)f ′(y) + c(x)yf ′(y) + a′(x)y2f(y) + c′′(x)y + a′′′(x)y2 = 0.
(52)

5.1.1 Case f(y) = λeαy, λα 6= 0

Setting f(y) = λeαy into (52), putting the solution into (51) and substituting the solutions into
(24) it is obtained a linear combination of the vector fields (4) and (5).
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5.1.2 Case f(y) = λyp, λ 6= 0

Substituting f(y) = λyp into (52), we arrive at

2c′(x)− b′′(x) + 3a′′(x)y + 3λa(x)yp = 0,

d′′(x) + λ[2b′(x) + (p− 1)c(x)]yp + λpd(x)yp−1 + λa′(x)yp+1 + c′′(x)y + a′′′(x)y2 = 0.
(53)

Now we must separately analyze the cases p = 0, 1,−3. Then, we consider p an arbitrary power if
p /∈ {0, 1,−3}.

a) p arbitrary

In this case, from (53) we conclude that a = 2c′(x) − b′′(x) = 2b′(x) + (p − 1)c(x) = d = 0.
Then, solving the obtained system and substituting the solutions into (24), it is obtained a
linear combination of the vector fields (4) and (6).

b) p = 1

Substituting p = 1 into (52), we obtain

a′′(x) + λa(x) = 0, b′′(x)− 2c′(x) = 0, a′′′(x) + λa′(x) = 0, c′′(x) + 2λb′(x) = 0

and d′′(x) + λd(x) = 0. Changing d by β, we obtain the generator (15) with the condition (16).
Solving the remaining equations, it is concluded that the solution is a linear combination of the
generators (4), (14) and (17).

c) p = −3

Substituting p = −3 into (53) we conclude that b = c1x
2 + c2x + c3 and c = c1x + c2. Then,

solving the remaining equations and putting the solutions into (24), it is then obtained a linear
combination of (4), (7) and (8).

5.1.3 Case f(y) = λ, λ ∈ R

In this case, setting f(y) = λ into (52), solving the system and substituting the solution into (24)
we then obtain a linear combination of the generators (9) – (13).

5.2 Case n > 1

Now we prove Theorem 1 with n > 1. Actually, it is almost proved in Lemma 3. In what follows
we finish the demonstration by considering equation (48) and its consequences on (46) and (47).

5.2.1 Case f(y) = λeαy, λα 6= 0

Substituting f(y) = λeαy into (48) we conclude that a1 = 0, β = 0 and k1 = (1 − 2n)a2/2. Then
we have ξ = a2x+ a3 and η = −2na2α. Substituting these coefficients into (24) it is obtained a linear
combination of the vector fields (4) and (5).
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5.2.2 Case f(y) = λyp, λ 6= 0

Substituting f(y) = λyp into (48), we arrive at

{

[(2n− 1)p + (2n+ 1)]a1x+
(2n − 1)p + (2n + 1)

2
a2 + (p− 1)k1

}

yp + pβyp−1 + β(2n) = 0. (54)

We shall now consider the cases p arbitrary, p = 1 and (21). When p = 0, we have f(y) = λ.

a) p arbitrary

From (54), if p is arbitrary, then β = a1 = 0 and

k1 =
(2n − 1)p + (2n + 1)

2(1− p)
a2.

Therefore

ξ = a2x+ a3, η =
2n

1− p
a2y

and, once these components are substituted in (24), one obtains a linear combination of (4) and
(6).

b) p = 1

For p = 1, (54) implies that a1 = a2 = 0 and β(2n) + λβ = 0, which gives us the generators (4),
(14) and (15).

c) p = 1+2n
1−2n

Finally, setting p = 1+2n
1−2n into (54), one concludes that k1 = β = 0 and then

ξ = a1x
2 + a2x+ a3, η = (2n − 1)a1xy +

2n− 1

2
a2y

and, once substituted into (24), it is obtained a linear combination of the generators (4), (7) and
(8).

5.2.3 Case f(y) = λ, λ ∈ R

Substituting f(y) = λ in (48), we conclude that

β(x) =

2n−1
∑

k=0

ckx
k − a1λ

x2n+1

(2n)!
− 2n+ 1

2
a2λ

x2n

(2n)!
+ k1λ

x2n

(2n)!
. (55)

Therefore, substituting (55), (46) and (47) into (24), it is obtained a linear combination of operators
(4), (9), (10), (11) and (12).
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6 Proofs of Theorems 2 and 3

Here we classify, from the Lie point symmetries, those which are Noether symmetries, according
to Definition 1. We restrict ourselves, however, only to the nonlinear cases.

To begin with, it is very simple to conclude that for the generator (4), the following identity holds

X1L+ LDξ = 0, (56)

where L is the Lagrangian (35), for any smooth function F = F (y). Therefore the translation in x is
a Noether symmetry operator to equation (1).

6.1 Proof of Theorem 2

Let us now prove Theorem 2. Firstly, applying (25) to the Lagrangian (35), with

F (y) = (−1)n
λ

p+ 1
yp+1,

we have

DpL+ LDξ =
2n+ 1 + p(2n − 1)

1− p
L.

Therefore, Dp is a variational symmetry operator if and only if p is given by (21). This proves Theorem
2.

6.2 Proof of Theorem 3

We have already demonstrated that the generators X1 and X2, given respectively by (4) and (7),
are variational symmetries operators. Then, in order to prove Theorem 3 it is only necessary to prove
that X3, given by (8), is a Noether symmetry operator.

Applying the operator (26) to the Lagrangian

L =
(y(n))2

2
+ (−1)nλ

1− 2n

2
y

2

1−2n (57)

we obtain

X3L+ LDξ = n2y(n−1)yn = D

[

n2

2
(y(n−1))2

]

. (58)

Therefore X3 is a divergence symmetry operator with potential

A =
n2

2
(y(n−1))2. (59)

7 First integrals and exact solutions

From physical point of view, a first integral corresponds to a constant of motion, that is, a quantity
which is preserved along time. Now we establish first integrals associated with the Noether symmetries
of the nonlinear cases. An essential point to understand the results presented here is that

δL
δy(k)

= (−1)n−ky(2n−k), k ≥ 1 (60)
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where L is the Lagrangian (35).
Considering the Lie point symmetry generator X1, given by (4), a first integral can be found setting

on (36) the Noether operator (30) associated with the generator (4). Then, considering (60), a first
integral, for any smooth function F = F (y) in (35) is given by

I =
(y(n))2

2
+ F (y) +

n−1
∑

j=0

(−1)n−jy(j+1)y(2n−j−1). (61)

In particular, considering the Lagrangian (57), we have

I1 =
(y(n))2

2
+ (−1)nλ

1− 2n

2
y

2

1−2n +
n−1
∑

j=0

(−1)n−jy(j+1)y(2n−j−1). (62)

Let us now find the first integral associated with the variational symmetry operator X2, given
by (5). Replacing the operator N in equation (36) by the Noether operator given by (31), a simple
calculation yields

I2 = x
(y(n))2

2
+ (−1)nλx

(1− 2n)

2
y

2

1−2n

+
n−1
∑

j=0

(−1)n−j−1

(

2n − 2j − 1

2
y(j) − xy(j+1)

)

y(2n−j−1).

(63)

Finally, considering (32), the Lagrangian (57) and the potential (59), we obtain the third first
integral

I3 =
x2

2
(y(n))2 + (−1)nλx2

1− 2n

2
y

2

1−2n − n2

2
(y(n−1))2

+

n−1
∑

j=0

(−1)n−j−1
[

j(2n − j)y(j−1) + (2n − 2j − 1)xy(j) − x2y(j+1)
]

y(2n−j−1).

(64)

From (62), (63) and (64), once considering the expression x2I1 − 2xI2 + I3 and after reckoning, it
is obtained the following ordinary differential equation

n−1
∑

j=0

(−1)n−j
[

j(2n − j)y(j−1)y(2n−j−1)
]

+
n2

2
(y(n−1))2 + x2I1 − 2xI2 + I3 = 0. (65)

For the case n = 1, we have

x2I1 − 2xI2 + I3 = −y2

2
, (66)

which can easily provide a solution of the equation (2). Such solution, as far as we know, was firstly
found by [Pinney (1950)]. For further details regarding the Ermakov equation, see [Leach and Andriopoulos (2008)].

For n = 2, (65) is reduced to

−3yy′′ + 2(y′)2 + x2I1 − 2xI2 + I3 = 0,
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an equation first obtained in [Bokhari et al.(2010)] and later discussed in [Fatima et al. (2013)].
We observe that from (65) it is possible to obtain a three-parameter family of solutions of the

considered equation, which does not imply that it is an easy task. For instance, to the case n = 1 a
solution is implicitly given by (66). However for n = 2 the situation is a little bit more complicated,
see, for instance, the discussions about this point in [Bokhari et al.(2010), Fatima et al. (2013)].

As it was previously pointed out, it is interesting to observe that all Lie symmetries of the con-
sidered equation are also Noether symmetries. This fact was observed in the literature for cer-
tain equations, see [Bozhkov(2005), Bozhkov and Mitidieri(2007)]. However, for equations of the
type (1), this fact was known for the case n = 1 and, more recently, for the case n = 2. In
[Bokhari et al.(2010), Fatima et al. (2013)] these aspects were discussed, but not from the point of
view of the present paper. An implicit solution of (3) was presented in [Bokhari et al.(2010)], see also
[Fatima et al. (2013)]. In [Freire et al. (2013)] it was presented an explicit three-parameter family of
solutions of (3) by using a general linear combination of the Lie point symmetry generators of the
equation.

We shall now use the characteristic method (see [Bluman and Kumei(1989)], page 169, and [Ibragimov (1999)],
section 9.4, for further details) to obtain a three-parameter family of solutions of

y(2n) + λy
1+2n

1−2n = 0. (67)

Firstly, we recall that the Lie point symmetry generators admitted by (67) are linear combinations
of the generators (4), (7) and (8). Secondly, let X = αX1 + 2βX2 + γX3, where α, β and γ are
constants, be a linear combination of them. We therefore obtain

X = (α + 2βx+ γx2)
∂

∂x
+ (2n − 1)(βy + γxy)

∂

∂y
.

Solving the corresponding characteristic equations

dx

α+ 2βx+ γx2
=

dy

(2n− 1)(βy + γxy)

we have the invariant
φ =

y

(α+ 2βx+ γx2)
2n−1

2

.

Then, taking

y = An(α+ 2βx+ γx2)
2n−1

2

and imposing that this function is a solution of (67) we conclude that

An =

[

(−1)n+1 λ

(β2 − αγ)n

(

2nn!

(2n)!

)2
]

2n−1

4n

.

Then

y(x) =

[

(−1)n+1 λ

(β2 − αγ)n

(

2nn!

(2n)!

)2
]

2n−1

4n

(α+ 2βx+ γx2)
2n−1

2 (68)

is a three-parameter family of solutions of (67) since β2 − αγ 6= 0 and

(−1)n+1 λ

(β2 − αγ)n
> 0.
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In particular,

y(x) =

(

λ

β2 − αγ

) 1

4 √

α+ 2βx+ γx2

is a solution of the Ermakov equation (2), while

y(x) =

[ −λ

9(β2 − αγ)2

] 3

8

(α+ 2βx+ γx2)
3

2

is a solution of (3), which was obtained, changing constants, in [Freire et al. (2013)].

8 Conclusions

In the present paper we extended some results presented in [Bokhari et al.(2010), Freire et al. (2013)]
for an arbitrary even-order autonomous ordinary differential equation and we also presented the one-
dimensional version of the results obtained in [Svirshchevskii (1993), Bozhkov(2006)].

Additionally, the class of equations (1) was investigated from the point of view of the modern
group analysis. It was shown that the largest symmetry Lie algebra, for the nonlinear cases, is
reached for equation (67). Moreover, for this equation the Noether symmetry group coincides with
the Lie point symmetry group, an uncommon case in the literature. This fact was well known for
equations (2) and (3), see [Bokhari et al.(2010), Fatima et al. (2013), da Silva (2013a)]. However, for
the class (1), for arbitrary n, this is the first paper communicating such a mentioned result. We
can explain this mysterious and interesting fact as a phenomena that occurs for certain equations
involving power nonlinearities, and for a specific exponent the number of Lie symmetries not only is
the largest, compared with other nonlinear cases of the group classification, but also all Lie symmetries
are Noether symmetries. This fact, up to our knowledge, was first emphasised in [Bozhkov(2005)]. In
analysis, such kind of exponent, called critical exponent, is related not only with embedding theorems,
but also with some values dividing existence and non-existence cases of solution for certain differential
equations. The reader is guided to [Bozhkov(2005)] for a better discussion. The question now is: why
does this phenomena, that is, the Lie symmetry group coincides with the Noether symmetry group,
only occur for this kind of nonlinearity for the class investigated? One possible explication might come
from the the existence of nontrivial conserved quantities obtained from all Lie point symmetries of
these equations, since for this kind of equations we not only have the maximal symmetry Lie algebra,
but from any symmetry one can establish a conserved quantity. In particular, we do not know in the
literature a semilinear Euler-Lagrange equation of the type (1) with the following properties:

1. For the nonlinear cases the symmetry Lie algebra is the largest;

2. All Lie point symmetries are Noether symmetries;

3. At least one symmetry provides a trivial conserved quantity.

Then last, but not least, we leave a question: are there equations or systems accomplishing the
points above?
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