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Abstract. First, by using linear and trilinear estimates in Bourgain type analytic and Gevrey spaces,

the local well-posedness of the Cauchy problem for the modified Kawahara equation on the line is

established for analytic initial data u0(x) that can be extended as holomorphic functions in a strip

around the x-axis. Next we use this local result and a Gevrey approximate conservation law to prove

that global solutions exist. Furthermore, we obtain explicit lower bounds for the radius of spatial

analyticity r(t) given by r(t) ≥ ct−(4+δ), where δ > 0 can be taken arbitrarily small and c is a positive

constant.

1. Introduction and main result

In this paper we consider the Cauchy problem for the modified Kawahara equation on the line{
ut + αuxxxxx + βuxxx + γux + ∂xu

3 = 0, t, x ∈ R,
u(0, x) = u0(x),

(1.1)

where u : R2 7→ R is a real-valued function and α, β, γ are arbitrary real constants with α 6= 0.

Equation (1.1) arises in the study of water waves with dimensionless magnitude of surface tension and

Weber numbers ε next to 1/3, see [1, 7, 10, 13, 14, 15]. It can be considered a generalization of the

well-known modified KdV equation

ut + uxxx + u2ux = 0, (1.2)

a dispersive equation employed in the study of phenomena such as acoustic waves in inharmonic media

and magneto-hydrodynamic waves in collisionless plasma, see [9].

Well-posedness of the Cauchy problem for the modified Kawahara equation on the line (1.1) in

Sobolev spaces has been studied by many authors. For instance, Jia and Huo [10] used the Fourier

restriction norm to show that (1.1) is locally well-posed in Hs(R) for s > −1/4 and Yan, Li and Yang

[20] showed the existence of global solutions in Hs(R) for s > −3/22.

The first novelty in this paper is the study of the problem of global well-posedness for initial data

u0(x) that are analytic on the line and can be extended as holomorphic functions in a strip around

the x-axis. A class of analytic functions suitable for our analysis is the analytic Gevrey class Gσ,s(R)

introduced by Foias and Temam [5], which may be defined as

Gσ,s(R) =
{
f ∈ L2(R) : ‖f‖2Gσ,s(R) =

∫
R
e2σ|ξ|(1 + |ξ|)2s|û(ξ)|2dξ <∞

}
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2 Radius of analyticity for the modified Kawahara equation

for σ ≥ 0 and s ∈ R. In the particular case where σ = 0, the space G0,s(R) is reduced to the Sobolev

space Hs(R), while for σ > 0 we have the following characterization, see [12]:

Proposition 1.1. (Paley-Wiener Theorem) Let σ > 0 and s ∈ R. Then f ∈ Gσ,s(R) if and only

if it is the restriction to the real line of a function F which is holomorphic in the strip {x+ iy : x, y ∈
R, |y| < σ} and satisfies

sup
|y|<σ

‖F (x+ iy)‖Hs
x(R) <∞.

In the view of the Paley-Wiener Theorem, it is natural to take initial data in Gσ,s(R) and obtain

a better understanding of the behavior of solution as we try to extend it globally in time. It means

that given u0 ∈ Gσ,s(R) for some initial radius σ > 0 we want to estimate the behavior of the radius

of analyticity σ(T ) as time T goes. This is our second novelty and main goal in this paper.

To achieve this goal first we prove local well-posedness in the space Gσ,s(R) with σ > 0 and s > −1
4 ,

i.e., the local solution is analytic in the spatial variable. Next we use this local result and a Gevrey

approximate conservation law to gradually extend the local solution for all time. Furthermore we

obtain explicit lower bounds on the radius of spatial analyticity r(t) at any time t ≥ 0, which is given

by r(t) ≥ ct−(4+δ), where δ > 0 can be taken arbitrarily small and c is a positive constant, that will

be described more precisely later.

Our first new result corresponds to local well-posedness, with a bound for the lifespan:

Theorem 1.1. Let s > −1/4 and σ > 0. Then for any initial data u0 ∈ Gσ,s(R), there exists a

positive time Tσ,s=̇Tσ,s,u0, depending only on σ, s and u0, such that the Cauchy problem (1.1) is locally

well-posed in C([−Tσ,s, Tσ,s], Gσ,s(R)). Furthermore, the solution u satisfies the bound

‖u(t)‖Gσ,s(R) ≤ c‖u‖Xσ,s,b(R2) ≤ 2C‖u0‖Gσ,s(R), |t| ≤ Tσ,s (1.3)

and

Tσ,s =
1

(2 + 24ε16C5‖u0‖2Gσ,s(R))
1/ε
, (1.4)

for certain constants C > 0 and some b = 1
2 + ε, with 0 < ε < 1

25 .

Thus this result shows that for local-in-time the radius of analyticity remains constant. Our next

new and main result for modified Kawahara equation yields an estimate on how the width of the strip

of the radius of the spatial analyticity decay with time.

Theorem 1.2. Given σ0 > 0, s > −1/4 and an initial data u0 ∈ Gσ0,s(R), the solution u obtained in

Theorem 1.1 extends globally in time, and for any T > 0, we have

u ∈ C([−T, T ], Gσ(T ),s(R))

with σ(T ) = min{σ0; cT−(4+δ)}, where δ > 0 can be taken arbitrarily small and c is a positive constant.

The method used here for proving lower bounds on the radius of analyticity was introduced in [18]

in the context of the 1D Dirac-Klein-Gordon equations. It was applied to the on line KdV equation in

[16] improving an earlier result of Bona et al. [2], to the dispersion-generalized periodic KdV equation

in [8] and to the quartic generalized KdV equation on the line in [17].

The remaining of the paper is organized as follows. In Sections 2, 3 and 4 we define the function

spaces needed and present all the auxiliary estimates that will be employed in the remaining sections.
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In Section 5 we prove Theorem 1.1 using the standard contraction method. Section 6 proves the

existence of a fundamental approximate conservation law. In section 7, by combining the approximate

conservation law with Theorem 1.1 and applying them repeatedly, we can glue intervals in a way to

gradually extend the local solution in time to finally prove Theorem 1.2.

2. Function spaces and auxiliary results

In this section we will present the elementary spaces and lemmas used for the proofs of our theorems.

Our first step is to recall the embedding property of Gevrey spaces (see [11] p.460): for all 0 < σ′ < σ

and s, s′ ∈ R, we have

Gσ,s(R) ⊂ Gσ′,s′(R), (2.1)

i.e., ‖ϕ‖Gσ′,s′ (R) ≤ Cσ,σ′,s,s′‖ϕ‖Gσ,s(R).

As in Grujić and Kalisch [6] we consider a space that is a hybrid between the analytic Gevrey space

and a space of the Bourgain-type. More precisely, for σ ≥ 0, s ∈ R and b ∈ [−1, 1] define Xσ,s,b(R2)

to be the Banach space equipped with the norm

‖u‖2Xσ,s,b(R2) =

∫
R

∫
R
e2σ|ξ|(1 + |ξ|)2s(1 + |τ − h(ξ)|)2b|û(τ, ξ)|2dτdξ,

where h(ξ) = −αξ5 + βξ3 − γξ and û(τ, ξ) = 1
(2π)2

∫
R
∫
R e
−i(tτ+xξ)u(t, x)dtdx.

For σ = 0, Xσ,s,b(R2) coincides with the space Xs,b(R2) introduced by Bourgain [3], and Kenig,

Ponce and Vega [14]. The norm of Xs,b(R2) is explicitly given by

‖u‖2Xs,b(R2) =

∫
R

∫
R

(1 + |ξ|)2s(1 + |τ − h(ξ)|)2b|û(τ, ξ)|2dτdξ.

All the well-known properties of the standard Xs,b(R2) spaces carry over to the Gevrey-modified

spaces by making use of the substitution u→ eσ|Dx|u.

The next lemma shows that Xσ,s,b(R2) ↪→ C(R;Gσ,s(R)). For σ = 0 the proof can be found, for

instance, in [19], section 2.6 and for σ > 0 we suggest to the reader the reference [6].

Lemma 2.1. Let s ∈ R and b > 1/2. Then for u ∈ Xσ,s,b(R2) we have

|u|C(R),σ,s=̇ sup
t∈R
‖u(t, ·)‖Gσ,s(R) ≤ L‖u‖Xσ,s,b(R2), (2.2)

where L > 0 depends only b and, without loss of generality, we can assume that L > 1.

Remark 2.1. This will be of importance due to the fact that we will show that, given an initial data

u0(x) ∈ Gσ,s(R) there is a unique solution u ∈ Xσ,s,b(R2) to the Cauchy problem (1.1), for a certain

b > 1/2 and therefore there is a solution to the Cauchy problem (1.1), u ∈ C([−T, T ], Gσ,s(R)).

3. Linear estimates

Now we consider the linear Cauchy problem{
ut + αuxxxxx + βuxxx + γux = F (t, x)

u(0, x) = u0(x).
(3.1)
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By using Duhamel’s formula we may write the solution

u(t, x) = W (t)u0(x) +

∫ t

0
W (t− t′)F (t′, x)dt′,

where W (t) = e−tL, L is the linear operator L = α∂5
x + β∂3

x + γ∂x and

W (t)ϕ(x) =

∫
R
ei{xξ+(−αξ5+βξ3−γξ)t}ϕ̂(ξ)dξ. (3.2)

Let ψ1 ∈ C∞(R,R), with 0 ≤ ψ1 ≤ 1, such that

ψ1(t) =

{
1, |t| ≤ 1,

0, |t| ≥ 2,

and for 0 < δ < 1 we set ψδ(t) = ψ1(t/δ).

Lemma 3.1. For all s ∈ R, σ > 0 and b > 1
2 we have

‖ψ1(t)W (t)u0‖Xσ,s,b(R2) ≤ C‖u0‖Gσ,s(R),

where C > 0 depends on ψ1.

Proof. The proof follows the lines of the proof of Lemma 3.1 in [14]. �

Lemma 3.2. For all s ∈ R, σ > 0, b ∈ (1/2, 1) and 0 < δ < 1, we have∥∥∥∥ψδ(t) ∫ t

0
W (t− t′)F (t′)dt′

∥∥∥∥
Xσ,s,b(R2)

≤ Cδ
1
2
−b‖F‖Xσ,s,b−1(R2).

Lemma 3.3. Let ϕ ∈ S(R) be a Schwartz function in time. If −1
2 < b1 ≤ b′1 < 1

2 , then for any

δ ∈ (0, 1) and σ > 0 we have

‖ϕ(t/δ)u‖Xσ,s,b1 (R2) ≤ Cδ
b′1−b1‖u‖

Xσ,s,b′1 (R2)
.

The proofs of the Lemma 3.2 and Lemma 3.3 for σ = 0 can be found in Lemma 2.15 of [10] and in

Lemma 2.11 of [19], respectively. These inequalities clearly remain valid for σ > 0, as one merely has

to replace u0 by eσ|Dx|u0, F by eσ|Dx|F and u by eσ|Dx|u in these results.

4. Trilinear estimate

The next result provides the essential trilinear estimate needed for the proof of Theorem 1.1 and

Theorem 1.2.

Lemma 4.1. (Theorem 4.1 of [10]) Let s > −1/4, b2 > 1/2 and b′2 ∈ (1/2, 7/10). Then

‖∂x(v1v2v3)‖
Xs,b′2−1(R2)

≤ C‖v1‖Xs,b2 (R2)‖v2‖Xs,b2 (R2)‖v3‖Xs,b2 (R2)

for some constant C > 0.

Remark 4.1. Setting

fi(τ, ξ) := (1 + |ξ|)s(1 + |τ − h(ξ)|)b2 v̂i(τ, ξ), i = 1, 2, 3,
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the estimate of Lemma 4.1 can be rewritten as

‖∂x(v1v2v3)‖
Xs,b′2−1(R2)

=
∥∥∥ ξ(1 + |ξ|)s

(1 + |τ − h(ξ)|)1−b′2
v̂1v2v3(τ, ξ)

∥∥∥
L2
τ,ξ(R2)

= C
∥∥∥ ξ(1 + |ξ|)s

(1 + |τ − h(ξ)|)1−b′2

∫
R4

v̂1(τ1, ξ1)v̂2(τ2, ξ2)v̂3(τ − τ1 − τ2, ξ − ξ1 − ξ2)dξ1dξ2τ1dτ2

∥∥∥
L2
τ,ξ(R2)

= C
∥∥∥ ξ(1 + |ξ|)s

(1 + |τ − h(ξ)|)1−b′2

∫
R4

f1(τ1, ξ1)

(1 + |ξ1|)s(1 + |τ1 − h(ξ1)|)b2

× f2(τ2, ξ2)

(1 + |ξ2|)s(1 + |τ2 − h(ξ2)|)b2
(4.1)

× f3(τ − τ1 − τ2, ξ − ξ1 − ξ2)

(1 + |ξ − ξ1 − ξ2|)s(1 + |τ − τ1 − τ2 − h(ξ − ξ1 − ξ2)|)b2
dξ1dξ2dτ1dτ2

∥∥∥
L2
τ,ξ(R2)

≤ C‖f1‖L2
τ,ξ(R2)‖f2‖L2

τ,ξ(R2)‖f3‖L2
τ,ξ(R2).

Corollary 4.1. Let σ > 0, s > −1/4, b2 > 1/2 and b′2 ∈ (1/2, 7/10). Then

‖∂x(u1u2u3)‖
Xσ,s,b′2−1(R2)

≤ C‖u1‖Xσ,s,b2 (R2)‖u2‖Xσ,s,b2 (R2)‖u3‖Xσ,s,b2 (R2)

for some constant C > 0.

Proof. This estimate can be restated in the form (4.1) modified by the factor eσ|ξ| in the first line of the

(4.1) and in the others line we can replace,using the triangle inequality, eσ|ξ| by eσ|ξ−ξ1|eσ|ξ1−ξ2|eσ|ξ2|.

�

Finally, for δ > 0 we will need the restrictions of Xσ,s,b(R2) to a time slab (−δ, δ)× R. This space

is denoted by Xσ,s,b
(δ) (R2), and is a Banach space when equipped with the norm

‖u‖
Xσ,s,b

(δ)
(R2)

= inf{‖v‖Xσ,s,b(R2) : v = u on (−δ, δ)× R}. (4.2)

Lemma 4.2. (Lemmas 5 of [16]) For δ > 0, σ ≥ 0, s ∈ R,−1/2 < b < 1/2 and any time interval

I ⊂ [−δ, δ] we have

‖χIu‖Xσ,s,b(R2) ≤ C‖u‖Xσ,s,b
(δ)

(R2)
.

5. Proof of Theorem 1.1

5.1. Existence. For the proof of local well-posedness in the analytic Gevrey spaces, we will use the

standard Banach contraction principle for functions u ∈ Xσ,s,b(R2) in a given closed ball B. Fix σ > 0,

s > −1/4 and u0 ∈ Gσ,s(R), and define the integral operator

Γ(u)(t, x) := ψ1(t)W (t)u0(x)− ψδ(t)
∫ t

0
W (t− t′)∂xu3(t′, x)dt′. (5.1)

If that is useful for the nonlinear estimates, as will be, one can also introduce additional cutoffs in

∂xu
3(t′, x) and consider the equation

Γ(u)(t, x) := ψ1(t)W (t)u0(x)− ψδ(t)
∫ t

0
W (t− t′)ψ2δ(t

′)∂xu
3(t′, x)dt′, (5.2)

which is actually identical with (5.1) since ψ2δ = 1 on support of ψδ.
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For s > −1
4 , b ∈ (1

2 , 1) and δ ∈ (0, 1) it follows from Lemma 3.1 and Lemma 3.2 that

‖Γ(u)‖Xσ,s,b(R2) ≤ C‖u0‖Gσ,s(R) + Cδ
1
2
−b‖ψ2δ(t)∂xu

3‖Xσ,s,b−1(R2). (5.3)

From now on we shall use the letter C to represent a constant which may change a finite number of

times and we fix b = 1
2 + ε, with 0 < ε < 1

25 , which means that b− 1 ∈
(
−1

2 ,−
3
10

)
. Taking b1 = b− 1

and b′1 = −1
2 +5ε, we have −1

2 < b1 = b−1 = −1
2 + ε < b′1 = −1

2 +5ε < −1
2 +5 1

25 = −1
2 + 1

5 = − 3
10 <

1
2

and therefore it follows from Lemma 3.3 that

‖ψ2δ(t)∂xu
3‖
Xσ,s,− 1

2+ε(R2)
≤ C(2δ)4ε‖∂xu3‖

Xσ,s,− 1
2+5ε(R2)

. (5.4)

Now, choosing b′2 = 1
2 + 5ε we have b′2 − 1 = −1

2 + 5ε and 1
2 < b′2 = 1

2 + 5ε < 1
2 + 5 1

25 = 1
2 + 1

5 = 7
10

and applying Corollary 4.1 with u1 = u2 = u3 = u, b2 = b = 1
2 + ε and b′2 = 1

2 + 5ε we obtain

‖∂xu3‖
Xσ,s,− 1

2+5ε(R2)
≤ C‖u‖3

Xσ,s, 12+ε(R2)
. (5.5)

It follows from (5.3), with b = 1
2 + ε and b− 1 = −1

2 + ε, (5.4) and (5.5) that we have

‖Γ(u)‖
Xσ,s, 12+ε(R2)

≤ C‖u0‖Gσ,s(R) + Cδ−ε‖ψ2δ(t)∂xu
3‖
Xσ,s,− 1

2+ε(R2)

≤ C‖u0‖Gσ,s(R) + Cδ−εC(2δ)4ε‖∂xu3‖
Xσ,s,− 1

2+5ε(R2)

≤ C‖u0‖Gσ,s(R) + Cδ−εC(2δ)4εC‖u‖3
Xσ,s, 12+ε(R2)

= C‖u0‖Gσ,s(R) + C324εδ3ε‖u‖3
Xσ,s, 12+ε(R2)

. (5.6)

Let B be the closed ball given by B = {u ∈ Xσ,s, 1
2

+ε(R2) : ‖u‖
Xσ,s, 12+ε(R2)

≤ 2Cδ−
2
3
ε‖u0‖Gσ,s(R)},

where C comes from (5.6). For u ∈ B, from (5.6), we obtain

‖Γ(u)‖
Xσ,s, 12+ε(R2)

≤ C‖u0‖Gσ,s(R) + 24ε8C6δε‖u0‖3Gσ,s(R).

Thus, if we fix δ such that

δε ≤ 1

2 + 24ε16C5‖u0|2Gσ,s(R)

, (5.7)

which implies that 24ε8C5δε‖u0‖2Gσ,s(R) < δε+24ε8C5δε||u0||2Gσ,s(R) ≤
1
2 and therefore we conclude that

‖Γ(u)‖
Xσ,s, 12+ε(R2)

≤ C‖u0‖Gσ,s(R) +
1

2
C‖u0‖Gσ,s(R) < 2C‖u0‖Gσ,s(R) (5.8)

and since 0 < δ < 1 we obtain

‖Γ(u)‖
Xσ,s, 12+ε(R2)

< 2Cδ−
2
3
ε‖u0‖Gσ,s(R) (5.9)

and therefore we have Γ(B) ⊂ B.

Now observe that

Γ(u)− Γ(v) = −ψδ(t)
∫ t

0
W (t− t′)ψ2δ(t

′)∂x(u3 − v3)(t′, x)dt′. (5.10)
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Taking the Xσ,s, 1
2

+ε(R2) norm and using Lemma 3.2 and Lemma 3.3 in the same way as in the

previous calculations, we obtain

‖Γ(u)− Γ(v)‖
Xσ,s, 12+ε(R2)

=
∥∥∥ψδ(t) ∫ t

0
W (t− t′)ψ2δ(t

′)∂x(u3 − v3)dt′
∥∥∥
Xσ,s, 12+ε(R2)

≤ Cδ−ε‖ψ2δ(t
′)∂x(u3 − v3)‖

Xσ,s,− 1
2+ε(R2)

≤ Cδ−εC(2δ)4ε‖∂x(u3 − v3)‖
Xσ,s,− 1

2+5ε(R2)

= C224εδ3ε‖∂x[(u2 + uv + v2)(u− v)]‖
Xσ,s,− 1

2+5ε(R2)

= C224εδ3ε
(
‖∂x[u2(u− v)]‖

Xσ,s,− 1
2+5ε(R2)

+ ‖∂x[uv(u− v)]‖
Xσ,s,− 1

2+5ε(R2)

+ ‖∂x[v2(u− v)]‖
Xσ,s,− 1

2+5ε(R2)

)
.

Now we apply Corollary 4.1, with b2 = 1
2 + ε and b′2 = 1

2 + 5ε, in the last inequalitty and we obtain

‖Γ(u)− Γ(v)‖
Xσ,s, 12+ε(R2)

≤ C224εδ3εC
(
‖u‖2

Xσ,s, 12+ε(R2)
+ ‖u‖

Xσ,s, 12+ε(R2)
‖v‖

Xσ,s, 12+ε(R2)

+ ‖v‖2
Xσ,s, 12+ε(R2)

)
× ‖u− v‖

Xσ,s, 12+ε(R2)
.

It follows from the last inequality that for u, v ∈ B we have

‖Γ(u)− Γ(v)‖
Xσ,s, 12+ε(R2)

≤ C224εδ3εC
[
12C2δ−

4
3
ε‖u0‖2Gσ,s(R)

]
‖u− v‖

Xσ,s, 12+ε(R2)

= 12C524εδ
5
3
ε‖u0‖2Gσ,s(R)‖u− v‖Xσ,s, 12+ε(R2)

. (5.11)

By using the fact that 0 < δ < 1 and (5.7) we conclude that

12C524εδ
5
3
ε‖u0‖2Gσ,s(R) ≤ 12C524εδε‖u0‖2Gσ,s(R) =

3

4
16C524εδε‖u0‖2Gσ,s(R)

<
3

4
2δε +

3

4
16C524εδε‖u0‖2Gσ,s(R)

=
3

4
(2δε + 16C524εδε‖u0‖2Gσ,s(R)) ≤

3

4
.

It follows from (5.11) and from the last inequality that

‖Γ(u)− Γ(v)‖
Xσ,s, 12+ε(R2)

≤ 3

4
‖u− v‖

Xσ,s, 12+ε(R2)
, for u, v ∈ B, (5.12)

hence, Γ is a contraction in B.

Since Γ is a contraction in the Banach space B, it follows that Γ has a unique fixed point u ∈ B.

The function u solves the initial-value problem (1.1) in the space Xσ,s,b(R2), where b = 1
2 + ε with

0 < ε < 1
25 , with lifespan |t| ≤ Tσ,s = δ with δ given in (5.7), by our cut-off function ψδ.

It follows from Remark 2.1, with Tσ,s = δ, that we have proved the existence of a solution to our

Cauchy problem which belongs to the space C([−Tσ,s, Tσ,s], Gσ,s(R)).



8 Radius of analyticity for the modified Kawahara equation

5.2. Uniqueness. The uniqueness of the solution in C([−Tσ,s, Tσ,s], Gσ,s(R)) will follow if it is known

that the solution u belongs to the space C([0, Tσ,s], G
σ,s(R)). In fact, by the invariance of (1.1) under

the reflection u(t, x) → u(−t,−x), it suffices to prove this result for positive times, i.e., if u solves

(1.1) for t ∈ [0, Tσ,s] then v(t, x) = u(−t,−x), t ∈ [−Tσ,s, 0] solves the same problem but now for

t ∈ [−Tσ,s, 0].

The uniqueness can be proved by the following standard argument.

Lemma 5.1. Suppose u and v are solutions to (1.1) in C([0, Tσ,s], G
σ,s(R)) with u(0, x) = v(0, x) in

Gσ,s(R), where σ > 0 and s > −1
4 . Then u = v.

Proof. Let w = u− v. Then w satisfies the initial-value problem

wt + αwxxxxx + βwxxx + γwx + (u3 − v3)x = 0, w(0, x) = 0. (5.13)

Thus, we have

1

2

d

dt
‖w(t, ·)‖2L2(R) =

1

2

d

dt

∫
R
w2(t, x)dx =

∫
R
w(t, x)wt(t, x)dx = −

∫
R
w(t, x)∂x(u3 − v3)dx, (5.14)

since we have∫
R
w(t, x)∂5

xw(t, x)dx =

∫
R
w(t, x)∂3

xw(t, x)dx =

∫
R
w(t, x)∂xw(t, x)dx = 0.

We notice that u3 − v3 = (u2 + uv + v2)(u− v)=̇ψw where ψ = u2 + uv + v2.

Thanks to the equation (5.14) we have

d

dt
‖w(t, ·)‖2L2(R) = −2

∫
R
w(t, x)∂x(u3 − v3)dx

= −2

∫
R
w(t, x)∂x[(u2 + uv + v2)(u− v)]dx

= −2

∫
R
w(t, x)∂x[ψ(t, x)w(t, x)]dx.

Integrating by parts the last integral we obtain

d

dt
‖w(t, ·)‖2L2(R) = −

∫
R
∂xψ(t, x)w2(t, x)dx

from which we deduce the inequality∣∣∣ d
dt
‖w(t, ·)‖2L2(R)

∣∣∣ ≤ ‖∂xψ‖L∞([0,T ]×R‖w(t)‖2L2(R). (5.15)

Since u, v ∈ C([0, Tσ,s];G
σ,s(R)) we have that u and v are continuous in t on the compact set [0, Tσ,s]

and are Gσ,s(R) in x. Thus, we can conclude that

‖∂xψ‖L∞([0,Tσ,s]×R) ≤ c <∞. (5.16)

Therefore, from (5.15) and (5.16) we obtain the differential inequality∣∣∣ d
dt
‖w(t, ·)‖2L2(R)

∣∣∣ ≤ c‖w(t)‖2L2(R), 0 ≤ t ≤ Tσ,s.

Solving it gives

‖w(t)‖2L2(R) ≤ e
c‖w(0)‖2L2(R), 0 ≤ t ≤ Tσ,s. (5.17)

Since ‖w(0)‖L2(R) = 0, from (5.17) we obtain that w(t) = 0, 0 ≤ t ≤ Tσ,s or u = v. �
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5.3. Continuous dependence of the initial data. Let u and v be two solutions of the Cauchy

problem with respective initial values u0 and v0. By Lemma 2.1 we have

|u− v|C(Tσ,s),σ,s
= sup

t∈[0,Tσ,s]
‖(u− v)(t, ·)‖Gσ,s(R)

≤ L‖u− v‖
Xσ,s, 12+ε(R2)

= L‖Γ(u)− Γ(v)‖
Xσ,s, 12+ε(R2)

(5.18)

where L > 1.

It follows from Lemma 3.1 that

‖Γ(u)− Γ(v)‖
Xσ,s, 12+ε(R2)

≤ C‖u0 − v0‖Gσ,s(R)

+

∥∥∥∥ψδ(t)∫ t

0
W (t− t′)ψ2δ(t

′)∂x(u3 − v3)(t′, x)dt′
∥∥∥∥
Xσ,s, 12+ε(R2)

.

It now follows from (5.10), (5.12) and from the last relation that

‖Γ(u)− Γ(v)‖
Xσ,s, 12+ε(R2)

≤ C‖u0 − v0‖Gσ,s(R) +
3

4
‖u− v‖

Xσ,s, 12+ε(R2)
. (5.19)

Now it follows from (5.18) and (5.19) that

|u− v|CTσ,s ,σ,s ≤ 4LC‖u0 − v0‖Gσ,s(R), (5.20)

and therefore the proof of continuous dependence is complete. �

6. Approximate conservation law

We start by recalling that

‖u(t)‖2L2(R) =

∫
R
u2(t, x)dx

is conserved for a solution u of (1.1), since by using Riemman-Lebesgue’s Lemma and integration by

parts we have

1

2

d

dt
‖u(t)‖2L2(R) =

1

2

d

dt

∫
R
u2(t, x)dx =

∫
R
u(t, x)ut(t, x)dx

=

∫
R
u(t, x)

[
− αuxxxxx(t, x)− βuxxx(t, x)− γux(t, x)− (u3)x(t, x)

]
dx

= −
∫
R
u(t, x)(u3)x(t, x)dx =

∫
R
u3(t, x)ux(t, x)dx

=
1

4

∫
R

(u4)x(t, x)dx = 0.

Our goal in this section is to establish an approximate conservation law for a solution to (1.1)

based on the conservation the L2(R) norm of solutions of the equation. Explicitly, we aim at proving

Theorem 6.1.

Theorem 6.1. Let σ > 0, 0 < T1 < Tσ,0 < 1 and u ∈ Xσ,0,b
(T1) (R2) be the local solution to the Cauchy

problem (1.1) restricted to [0, T1] × R, where Tσ,0 is given by (1.4), with s = 0 and b = 1
2 + ε, with

0 < ε < 1
25 . Given 0 < κ < 1/4, there exists a constant C > 0 such that the estimate

sup
t∈[0,T1]

‖u(t)‖2Gσ,0(R) ≤ ‖u(0)‖2Gσ,0(R) + Cσκ‖u‖4Gσ,0(R) (6.1)
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holds.

Theorem 6.1 is of fundamental importance as it guarantees, by combining it with Theorem 1.1 and

applying them repeatedly, we can glue intervals in a way to gradually extend the local solution in

time. This will lead to the global well-posedness of solutions in Gevrey spaces, as in Theorem 1.2.

Next we proceed with technical lemmas that will help us with the proof of Theorem 6.1.

Lemma 6.1. (Lemma 12 of [16]) For σ > 0, θ ∈ [0, 1] and α, β ∈ R, we have the estimate

eσ|α|eσ|β| − eσ|α+β| ≤ [2σmin{|α|, |β|}]θeσ|α|eσ|β|.

We will use Lemma 6.1 to prove the following corollary.

Corollary 6.1. For σ > 0, θ ∈ [0, 1] and ξ, ξ1, ξ2 ∈ R, we have

eσ|ξ1|eσ|ξ2|eσ|ξ−ξ1−ξ2| − eσ|ξ| ≤
[
4σ

(1 + |ξ − ξ1 − ξ2|)(1 + |ξ1|)(1 + |ξ2|)
1 + |ξ|

]θ
eσ|ξ1|eσ|ξ2|eσ|ξ−ξ1−ξ2|.

Proof. If ξ1, ξ2 and ξ − ξ1 − ξ2 have the same sign, there is nothing to prove. Without any loss of

generality, suppose ξ1 ≥ 0 and ξ2 ≤ 0. If ξ1 ≤ 0 and ξ2 ≥ 0, the change ξ̃1 = ξ2 and ξ̃2 = ξ1 will reduce

the result to the previous case.

If ξ− ξ1− ξ2 ≥ 0, writing α = ξ1 + (ξ− ξ1− ξ2) = ξ− ξ2 we have α ≥ 0 since ξ− ξ1− ξ2 ≥ 0 implies

that ξ − ξ2 ≥ ξ1 ≥ 0. Using Lemma 6.1, we obtain

eσ|ξ1|eσ|ξ2|eσ|ξ−ξ1−ξ2| − eσ|ξ| = eσ|α|eσ|ξ2| − eσ|α+ξ2| ≤ [2σmin{|ξ − ξ2|, |ξ2|}]θeσ|ξ1|eσ|ξ2|eσ|ξ−ξ1−ξ2|.

Analogously, if ξ − ξ1 − ξ2 ≤ 0, then taking β = ξ2 + (ξ − ξ1 − ξ2) = ξ − ξ1 ≤ 0 we have

eσ|ξ1|eσ|ξ2|eσ|ξ−ξ1−ξ2| − eσ|ξ| = eσ|β|eσ|ξ1| − eσ|β+ξ1| ≤ [2σmin{|ξ − ξ1|, |ξ1|}]θeσ|ξ1|eσ|ξ2|eσ|ξ−ξ1−ξ2|.

Therefore, for

A =

{
min{|ξ − ξ2|, |ξ2|}, if ξ − ξ1 − ξ2 ≥ 0,

min{|ξ − ξ1|, |ξ1|}, if ξ − ξ1 − ξ2 ≤ 0.
,

we can write

eσ|ξ1|eσ|ξ2|eσ|ξ−ξ1−ξ2| − eσ|ξ| ≤ [2σA]θeσ|ξ1|eσ|ξ2|eσ|ξ−ξ1−ξ2|.

From [16] (page 1014) we know that

min{|ξ − ξ1|, |ξ1|} ≤ 2
(1 + |ξ − ξ1|)(1 + |ξ1|)

1 + |ξ|
,

and now we can estimate A in the following way. If ξ − ξ1 − ξ2 ≥ 0, then

A = min{|ξ − ξ2|, |ξ2|} ≤ 2
(1 + |ξ − ξ2|)(1 + |ξ2|)

1 + |ξ|
.

Now observe that

1 + |ξ − ξ2| = 1 + |ξ − ξ1 − ξ2 + ξ1| ≤ 1 + |ξ − ξ1 − ξ2|+ |ξ1|
= (1 + |ξ − ξ1 − ξ2|)(1 + |ξ1|)− |ξ − ξ1 − ξ2||ξ1|
≤ (1 + |ξ − ξ1 − ξ2|)(1 + |ξ1|),
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which implies that

A ≤ 2
(1 + |ξ − ξ1 − ξ2|)(1 + |ξ1|)(1 + |ξ2|)

1 + |ξ|
.

On the other hand, if ξ − ξ1 − ξ2 ≤ 0, we have

A = min{|ξ − ξ1|, |ξ1|} ≤ 2
(1 + |ξ − ξ1|)(1 + |ξ1|)

1 + |ξ|
,

and the same procedure as above tells us that 1 + |ξ − ξ1| ≤ (1 + |ξ − ξ1 − ξ2|)(1 + |ξ2|) and we can

write

A ≤ 2
(1 + |ξ − ξ1 − ξ2|)(1 + |ξ1|)(1 + |ξ2|)

1 + |ξ|
.

In other words, we conclude that

A ≤ 2
(1 + |ξ − ξ1 − ξ2|)(1 + |ξ1|)(1 + |ξ2|)

1 + |ξ|

and the result is proven. �

Lemma 6.2. For κ ∈ [0, 1/4) there exists C > 0 such that for all σ > 0 and u ∈ Xσ,0,b(R2), with

b = 1
2 + ε with 0 < ε < 1

25 , we have

‖F‖X0,b−1(R2) ≤ Cσκ‖u‖3Xσ,0,b(R2) (6.2)

where F = ∂x
[
(eσ|Dx|u)3 − eσ|Dx|(u3)

]
.

Proof. Let G = (eσ|Dx|u)3 − eσ|Dx|(u3). Then

‖F‖X0,b−1(R2) =

∥∥∥∥ ξ

(1 + |τ − h(ξ)|)1−b Ĝ(τ, ξ)

∥∥∥∥
L2
τ,ξ(R2)

=
(∫

R2

|ξ|2

(1 + |τ − h(ξ)|)2(1−b) |Ĝ(τ, ξ)|2dτdξ
) 1

2
. (6.3)

We shall calculate the Fourier transform of G:

|Ĝ(τ, ξ)| =
∣∣∣ ̂(eσ|Dx|u)3 − ̂eσ|Dx|(u3)

∣∣∣ = C
∣∣∣(eσ|ξ|û ∗ eσ|ξ|û ∗ eσ|ξ|û)(τ, ξ)− eσ|ξ|(û ∗ û ∗ û)(τ, ξ)

∣∣∣
= C

∣∣∣ ∫
R4

eσ|ξ1|û(τ1, ξ1)eσ|ξ2|û(τ2, ξ2)eσ|ξ−ξ1−ξ2|û(τ − τ1 − τ2, ξ − ξ1 − ξ2)

−eσ|ξ|û(τ1, ξ1)û(τ2, ξ2)û(τ − τ1 − τ2, ξ − ξ1 − ξ2)dτ1dτ2dξ1dξ2

∣∣∣
≤ C

∫
R4

(
eσ|ξ1|eσ|ξ2|eσ|ξ−ξ1−ξ2| − eσ|ξ|

)∣∣∣û(τ1, ξ1)û(τ2, ξ2)û(τ − τ1 − τ2, ξ − ξ1 − ξ2)
∣∣∣dτ1dτ2dξ1dξ2.

For κ ∈ [0, 1/4) ⊂ [0, 1], from Corollary 6.1, we write

|Ĝ(τ, ξ)| ≤ C(4σ)κ
∫
R4

(1 + |ξ − ξ1 − ξ2|)κ(1 + |ξ1|)κ(1 + |ξ2|)κ

(1 + |ξ|)κ
(6.4)

×eσ|ξ1||û(τ1, ξ1)|eσ|ξ2||û(τ2, ξ2)|eσ|ξ−ξ1−ξ2||û(τ − τ1 − τ2, ξ − ξ1 − ξ2)|dτ1dτ2dξ1dξ2.
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Setting v = eσ|Dx|u and f(τ, ξ) = (1 + |τ −h(ξ)|)bv̂(τ, ξ) we have eσ|ξ|û(τ, ξ) = v̂(τ, ξ) = f(τ,ξ)
(1+|τ−h(ξ)|)b

and therefore we can write (6.4) as

|Ĝ(τ, ξ)| ≤ C(4σ)κ
∫
R4

(1 + |ξ − ξ1 − ξ2|)κ(1 + |ξ1|)κ(1 + |ξ2|)κ

(1 + |ξ|)κ
(6.5)

|f(τ1, ξ1)|
(1 + |τ1 − h(ξ1)|)b

|f(τ2, ξ2)|
(1 + |τ2 − h(ξ2)|)b

|f(τ − τ1 − τ2, ξ − ξ1 − ξ2)|
(1 + |τ − τ1 − τ2 − h(ξ − ξ1 − ξ2)|)b

dτ1dτ2dξ1dξ2.

It follows from (6.3) and (6.5) that

‖F‖X0,b−1(R2) =

∥∥∥∥ ξ

(1 + |τ − h(ξ)|)1−b Ĝ(τ, ξ)

∥∥∥∥
L2
τ,ξ(R2)

≤ C(4σ)κ
[ ∫

R2

|ξ|2

(1 + |τ − h(ξ)|)2(1−b)

(∫
R4

(1 + |ξ − ξ1 − ξ2|)κ(1 + |ξ1|)κ(1 + |ξ2|)κ

(1 + |ξ|)κ

|f(τ1, ξ1)|
(1 + |τ1 − h(ξ1)|)b

|f(τ2, ξ2)|
(1 + |τ2 − h(ξ2)|)b

|f(τ − τ1 − τ2, ξ − ξ1 − ξ2)|
(1 + |τ − τ1 − τ2 − h(ξ − ξ1 − ξ2)|)b

dτ1dτ2dξ1dξ2

)2
dτdξ

] 1
2

= C(4σ)κ
∥∥∥ ξ

(1 + |τ − h(ξ)|)(1−b)

∫
R4

(1 + |ξ − ξ1 − ξ2|)κ(1 + |ξ1|)κ(1 + |ξ2|)κ

(1 + |ξ|)κ
(6.6)

|f(τ1, ξ1)|
(1 + |τ1 − h(ξ1)|)b

|f(τ2, ξ2)|
(1 + |τ2 − h(ξ2)|)b

|f(τ − τ1 − τ2, ξ − ξ1 − ξ2)|
(1 + |τ − τ1 − τ2 − h(ξ − ξ1 − ξ2)|)b

dτ1dτ2dξ1dξ2

∥∥∥
L2
τ,ξ(R2)

.

Now by taking s = −κ ∈ (−1
4 , 0] we obtain

‖F‖X0,b−1(R2) ≤ C(4σ)κ
∥∥∥ ξ(1 + |ξ|)s

(1 + |τ − h(ξ)|)(1−b)

∫
R4

|f(τ1, ξ1)|
(1 + |ξ1|)s(1 + |τ1 − h(ξ1)|)b

× |f(τ2, ξ2)|
(1 + |ξ2|)s(1 + |τ2 − h(ξ2)|)b

× |f((τ − τ1 − τ2, ξ − ξ1 − ξ2))|
(1 + |ξ − ξ1 − ξ2|)s(1 + |τ − τ1 − τ2 − h(ξ − ξ1 − ξ2)|)b

dτ1dτ2dξ1dξ2

∥∥∥
L2
τ,ξ(R2)

.

Taking b′2 = b2 = b = 1
2 + ε, with 0 < ε < 1

25 in Remark 4.1 it follows that

‖F‖X0,b−1(R2) ≤Cσκ‖f‖3L2
τ,ξ(R2) = Cσκ‖v‖3X0,b(R2) = Cσκ‖eσ|Dx|u‖3X0,b(R2) = Cσκ‖u‖3Xσ,0,b(R2),

concluding the proof. �

Proof of Theorem 6.1.

Let κ, σ, T1, b and u as in the statement of Theorem 6.1. We start by defining the auxiliary function

U(x, t) = eσ|Dx|u(x, t), where Dx = −i∂x. Since u is real-valued we also have U real-valued. Applying

the exponential eσ|Dx| to the equation (1.1), it is easily seen that we obtain

Ut + αUxxxxx + βUxxx + γUx + eσ|Dx|∂xu
3 = 0,

which is equivalent to

Ut + αUxxxxx + βUxxx + γUx + 3U2Ux = ∂xU
3 − ∂x(eσ|Dx|u3).

Therefore, if we set

F = ∂x

[(
eσ|Dx|u

)3 − eσ|Dx|(u3)
]

(6.7)
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we obtain

Ut + αUxxxxx + βUxxx + γUx + 3U2Ux = F. (6.8)

Multiplying the resulting equation (6.8) by U and integrating in x ∈ R we obtain∫
R
UUtdx+

∫
R
αUUxxxxxdx+ β

∫
R
UUxxxdx+ γ

∫
R
UUxdx+ 3

∫
R
U3Uxdx =

∫
R
UFdx.

By noticing that ∂jxU(x, t)→ 0 as |x| → ∞ (see [16]) we can use integration by parts obtaining∫
R
UUtdx+

3

4

∫
R

(U4)xdx =

∫
R
UFdx

and, therefore we have

1

2

d

dt

∫
R
U2dx =

∫
R
UUtdx =

∫
R
UFdx.

Now integrating the last equality with respect to t ∈ [0, T1] we obtain

1

2

[∫
R
U2(T1, x)dx−

∫
R
U2(0, x)dx

]
=

∫ T1

0

∫
R
UFdxdt. (6.9)

Recalling that

‖u(t)‖2Gσ,0(R) =

∫
R
e2σ|ξ||û(t, ξ)|2dx =

∫
R
|Û(t, ξ)|2dx =

∫
R
U2(t, x)dx,

where in the last equality we used Plancherel theorem and the fact that we are assuming that the

solution u is real valued.

It follows from the last equality and from (6.9) that

‖u(T1)‖2Gσ,0(R) = ‖u(0)‖2Gσ,0(R) + 2

∫
R2

χ[0,T1](t)UFdxdt

≤ ‖u(0)‖2Gσ,0 + 2

∣∣∣∣∫
R2

χ[0,T1](t)UFdxdt

∣∣∣∣ . (6.10)

The next step is to estimate the integral on the right-hand side of (6.10).

Writing χ[0,T1](t)UF = (χ[0,T1](t)U)(χ[0,T1](t)F ) it follows from Parseval’s formula that∫
R2

(χ[0,T1](t)U)(χ[0,T1](t)F )dxdt =

∫
R2

̂(χ[0,T1](·)U)(τ, ξ) ̂(χ[0,T1](·)F (τ, ξ)dξdτ.

Then, Hölder’s inequality yields∣∣∣ ∫
R2

χ[0,T1](t)UFdxdt
∣∣∣ =

∣∣∣ ∫
R2

(1 + |τ − h(ξ)|)1−b ̂(χ[0,T1](·)U)(τ, ξ)

× (1 + |τ − h(ξ)|)b−1 ̂(χ[0,T1](·)F )(τ, ξ)dτdξ
∣∣∣

≤ ‖(1 + |τ − h(ξ)|)1−b ̂(χ[0,T1](·)U)(τ, ξ)‖L2
τ,ξ(R2)

× ‖(1 + |τ − h(ξ)|)b−1 ̂(χ[0,T1](·)F )(τ, ξ)‖L2
τ,ξ(R2)

= ‖χ[0,T1](·)U‖X0,1−b(R2)‖χ[0,T1](·)F‖X0,b−1(R2). (6.11)
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Due to the fact that b = 1/2 + ε with 0 < ε < 1
25 we have both −1/2 < b − 1 < 1/2 and

−1/2 < 1− b < 1/2. Therefore, one can use Lemma 4.2 to obtain

‖χ[0,T1](·)U‖X0,1−b(R2) ≤ C‖U‖X0,1−b
(T1)

(R2)
and ‖χ[0,T1](·)F‖X0,b−1(R2) ≤ C‖F‖X0,b−1

(T1)
(R2)

.

Since 0 < T1 < 1 and using the fact that ΨT1 = 1 for t ∈ [0, T1] and the definition of ‖ · ‖
Xσ,s,b

(T1)
(R2)

,

(see (4.2)), it follows from (6.11) and from the last relation that∣∣∣∣∫
R2

χ[0,T1](t)UFdxdt

∣∣∣∣ ≤ C‖U‖
X0,1−b

(T1)
(R2)
‖F‖

X0,b−1
(T1)

(R2)

≤ C‖ΨT1U‖X0,1−b(R2)‖ΨT1F‖X0,b−1(R2). (6.12)

Since −1
2 < 1− b < 1

2 and −1
2 < b− 1 < 1

2 it follows from Lemma 3.3 that

‖ΨT1U‖X0,1−b(R2) ≤ C‖U‖X0,1−b(R2) and ‖ΨT1F‖X0,b−1(R2) ≤ C‖F‖X0,b−1(R2). (6.13)

Noticing that

‖U‖X0,1−b(R2) = ||u||Xσ,0,1−b(R2) ≤ ‖u‖Xσ,0,b(R2), (6.14)

since we have 1 − b < 1
2 < 1

2 + ε = b, we can conclude that from it and Lemma 6.2 that for any

κ ∈ [0, 1/4) there exists a constant C such that

‖F‖X0,b−1(R2) ≤ Cσκ‖u‖3Xσ,0,b(R2). (6.15)

Therefore, we conclude from (6.10), (6.12), (6.13), (6.14) and (6.15) that

‖u(T1)‖2Gσ,0(R) ≤ ‖u(0)‖2Gσ,0(R) + Cσκ‖u‖4Xσ,0,b(R2).

Finally, by using the condition (1.3) we conclude that

sup
t∈[0,T1]

‖u(t)‖2Gσ,0(R) ≤ ‖u(0)‖2Gσ,0(R) + Cσκ‖u(0)‖4Gσ,0(R). (6.16)

The proof is now complete. �

7. Global extension and radius of analyticity

In this section we will prove Theorem 1.2 using a certain iterate process. Our goal is to show that,

given σ0 > 0 and u0 ∈ Gσ0,s(R), for large T > 0 it is possible to extend the local solution obtained

from Theorem 1.1 to a solution u(t, ·) ∈ Gσ(T ),s(R), with σ(T ) = min{σ0, cT
−(4+δ)}, where δ > 0 can

be taken arbitrarily small and c being a constant depending only on σ0 and u0, for all t ∈ [0, T ]. This

will be done in two steps: we will first prove the result for s = 0 and then extend it to any s > −1/4

and s 6= 0 using the embedding given in (2.1).

Given u0 ∈ Gσ0,s(R), with s > −1
4 and σ0 > 0, it follows from Theorem 1.1 that there exists an

unique solution u ∈ C([0, Tσ0,s];G
σ0,s(R)) to the Cauchy problem (1.1), with

Tσ0,s =
1

(2 + 24ε16C5‖u0‖2Gσ0,s(R))
1/ε
,

where 0 < ε < 1
25 .

Thus, there is a maximal time

T ∗=̇ sup{Tσ0,s : u ∈ C([0, Tσ0,s];G
σ0,s(R)) solves Cauchy problem (1.1) and satisfies (1.3)} (7.1)
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for which we have T ∗ ≥ Tσ0,s = 1
(2+24ε16C5‖u0‖2Gσ0,s(R))

1/ε , T
∗ ∈ (0,∞] and u ∈ C([0, T ∗);Gσ0,s(R)).

If T ∗ =∞, then we are done since the solution is defined for t ∈ [0,∞) and from (7.1) we conclude

that the radius of spacial analyticity persists for all time, that is

r(T ) = σ0. (7.2)

From now on we will assume that T ∗ <∞. We need to set the following time-step

T0 =
1

(2 + 24ε32C5‖u0‖2Gσ0,s(R))
1/ε
. (7.3)

Note that Tσ0,s = 1
(2+24ε16C5‖u0‖2Gσ0,s(R))

1/ε >
1

(2+24ε32C5‖u0‖2Gσ0,s(R))
1/ε = T0.

Since u ∈ C([0, Tσ0,s];G
σ0,s(R)) and T0 < Tσ0,s we have u ∈ C([0, T0];Gσ0,s(R)), which in turn

implies u ∈ C([0, T0];Gσ,s(R)) for σ < σ0, since we have Gσ0,s(R) ↪→ Gσ,s(R).

In order to prove that the solution u can be extend for any T ≥ T ∗ it is suffices to show that

u ∈ C([0, T ];Gσ(T ),s(R)), for allT ≥ T ∗, (7.4)

where σ(T ) = cT−
1
κ with c > 0 depending on u0 and σ0.

Case s = 0. By using Theorem 6.1 and the fact that ‖u(0)‖Gσ,0(R) ≤ ‖u(0)‖Gσ0,0(R), since σ < σ0 we

have

sup
t∈[0,T0]

‖u(t)‖2Gσ,0(R) ≤ ‖u(0)‖2Gσ0,0(R) + Cσκ‖u(0)‖4Gσ0,0(R). (7.5)

If we assume that

Cσκ‖u(0)‖2Gσ0,0(R) ≤ 1, (7.6)

then it follows from (7.5) that

sup
t∈[0,T0]

‖u(t)‖2Gσ,0(R) ≤ 2‖u(0)‖2Gσ0,0(R) <∞. (7.7)

It follows, by using ‖u(T0)‖Gσ,0(R) as the initial value and repeating the argument before, that the

Cauchy problem (1.1) has an unique solution in [0, 2T0]×R. In this way we succeed in extending the

solution of (1.1) to the time interval [0, 2T0].

The above argument can be repeated for ` steps, where ` is the maximal positive integer such that

`Cσκ‖u(0)‖2
Gσ0,0(R)

≤ 1. Therefore, the desired assertion follows if we can choose a number ` such

that `T0 ≥ T and `Cσκ‖u(0)‖2
Gσ0,0(R)

≤ 1. Thus, in order to make these conditions be satisfied we

start by recalling that T
T0

> 1 and defining ` =
[
T
T0

]
+ 1, where [x] the largest integer less than or

equal to x, we have

` =
[ T
T0

]
+ 1 >

T

T0

and therefore `T0 > T.

Now with this choice of ` we can choose

σκ ≤ 1([
T
T0

]
+ 1
)
C‖u0‖2Gσ0,0

<
T0

TC‖u0‖2Gσ0,0
,
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which implies that

σ ≤
( T0

C‖u0‖2Gσ0,0

) 1
κ
T−

1
κ =̇cT−

1
κ .

The general case. For s > −1
4 and s 6= 0 we will use the embedding given by (2.1), i.e.,

Gσ,s(R) ⊂ Gσ′,s′(R) for all 0 < σ′ < σ and s, s′ ∈ R,

i.e., ‖ϕ‖Gσ′,s′ (R) ≤ Cσ,σ′,s,s′‖ϕ‖Gσ,s(R).

It follows from this embedding that

u0 ∈ Gσ0,s(R) ⊂ G
σ0
2
,0(R).

It follows from the case s = 0, already proved, that there is a T̃0 > 0 such that

u ∈ C([0, T̃0], Gσ0/2,0(R))

and

u ∈ C([0, T ], G2c1T
− 1
κ ,0(R)), for T ≥ T̃0,

where c1 > 0 depends on u0, σ0.

Applying again the above embedding we now conclude that

u ∈ C([0, T̃0], Gσ0/4,s(R))

and

u ∈ C([0, T ], Gc1T
− 1
κ ,s(R)) for T ≥ T̃0.

The proof of Theorem 1.2 is now complete. �
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