Teoria da Medida e Integração

Lista 3

$Medida\ de\ Lebesgue\ em\ \mathbb{R}$

Nos exercícios abaixo, denotaremos por m a medida de Lebesgue em $(\mathbb{R}, \mathcal{L})$, m^* a medida exterior associada à m, e \mathcal{L} a σ -álgebra dos subconjuntos mensuráveis à Lebesgue. Ou seja, \mathcal{L} é formada pelos conjuntos $A \subseteq \mathbb{R}$ tais que

$$m^*(E) = m^*(E \cap A) + m^*(E \cap A^c),$$

para todo $E \subseteq \mathbb{R}$.

1. Mostre que, para cada $E \in \mathcal{L}$,

$$m(E) = \inf \left\{ \sum_{i} (b_i - a_i) : E \subset \bigcup_{i \in \mathbb{N}} (a_i, b_i) \right\}.$$

- 2. Dado $E \subset \mathbb{R}$, prove que as seguintes afirmações são equivalentes.
 - a. $E \in \mathcal{L}$
 - b. Para todo $\epsilon > 0$, existe um aberto $O \supset E$ tal que $m^*(O \setminus E) \le \epsilon$.
 - c. Para todo $\epsilon > 0$, existe um fechado $F \subset E$ tal que $m^*(E \setminus F) \leq \epsilon$.
- 3. Mostrar que $m(\mathbb{Q}) = 0$.
- 4. Para cada $\epsilon > 0$ construa um conjunto aberto $A \subset \mathbb{R}$ tal que $\mathbb{Q} \subset A$ e $m^*(A) < \epsilon$.
- 5. Seja $A \in \mathcal{L}$ um conjunto Lebesgue mensurável com m(A) = 0. Mostre que A^c é denso em \mathbb{R} .
- 6. Para $a, b \in \mathbb{R}$ com a < b seja $f : [a, b] \to \mathbb{R}$ uma função diferenciável. Suponha que exista M > 0, tal que para cada $x \in (a, b)$, $|f'(x)| \le M$, e mostre que

$$m^{\star}(f(A)) < Mm^{\star}(A)$$

para cada $A \subset [a, b]$.

7. Para $A \in \mathcal{L}$ com $m(A) < +\infty$ defina uma função $f: \mathbb{R} \to \mathbb{R}$ através da fórmula

$$f(x) := m(A \cap (-\infty, x])$$

para cada $x \in \mathbb{R}$.

- (a) Mostre que f é crescente em \mathbb{R} .
- (b) Mostre que f é uma função Lipschitz.
- 8. Seja $C \in \mathcal{L}$ com m(C) = 1. Mostre que, para cada 0 < r < 1, existe $A \in \mathcal{L}$, $A \subset C$, tal que m(A) = r.
- 9. (Primeiro Princípio de Littlewood para m). Suponhamos que $m(E) < \infty$. Provar que para todo $\epsilon > 0$, existe A, união finita de intervalos abertos, tal que

$$m(E \triangle A) < \epsilon$$
.

- 10. Dados $A \in \mathcal{B}(\mathbb{R})$ e $r \in \mathbb{R}$, defina os conjuntos $rA = \{rx : x \in A\}$ e $A + r = \{x + r : x \in A\}$. Nestas condições, prove que
 - (a) $rA, A + r \in \mathcal{B}(\mathbb{R})$;
 - (b) m(rA) = |r| m(A);
 - (c) m(A+r) = m(A) (m é invariante por translações).

(Dica: em (a) mostre que para $r \neq 0$

$$\mathcal{F}_r = \{ A \in \mathcal{B}(\mathbb{R}) : A + r \in \mathcal{B}(\mathbb{R}) \} \quad e \quad \mathcal{G}_r = \{ A \in \mathcal{B}(\mathbb{R}) : rA \in \mathcal{B}(\mathbb{R}) \}$$

 $s\~{a}o$ σ - $\'{a}lgebras.$)

11. Seja μ uma medida não-nula em $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, com $\mu(A) < \infty$ para todo $A \in \mathcal{B}(\mathbb{R})$ limitado. Mostre que μ é invariante por translações se, e somente se, existe c > 0 tal que $\mu(\cdot) = c \, m(\cdot)$.