Universidade Federal do ABC

Lista 4 - Probabilidade

Distribuição e Esperança de Variáveis Aleatórias

Distribuição

1 — Dado X uma variável aleatória tal que $\mathbb{P}(X > 0) > 0$. Prove que existe $\delta > 0$ tal que $\mathbb{P}(X > \delta) > 0$.

2 — Amostragem de uma variável aleatória exponencial

Encontre um algoritmo para produzir uma variável aleatória com distribuição $\operatorname{Exp}(\lambda)$ usando um gerador de números aleatórios que produz números aleatórios uniformes em (0,1). Em outras palavras, se $U \sim \operatorname{Uniforme}(0,1)$, encontre uma função $g:(0,1) \to \mathbb{R}$ tal que o aleatório variável X=g(U) tem distribuição $\operatorname{Exp}(\lambda)$.

3 — Perda de Memória - Distribuições Discretas

Uma v.a. discreta assumindo valores em $\mathbb N$ apresenta perda de memória se para todo k, $\mathfrak m \in]\mathbb N$, vale que

$$\mathbb{P}(X > k + m | X > m) = \mathbb{P}(X > k).$$

Mostre que se X apresenta perda de memória, então X tem distribuição Geométrica.

4 — Perda de Memória - Distribuições Contínuas

Dizemos que uma variável não negativa $X \ge 0$ tem a propriedade de perda de memória se $\mathbb{P}(X \ge t | X \ge s) = \mathbb{P}(X \ge t \ge s)$ para todo 0 < s < t.

- a) Mostre que as variáveis aleatórias exponenciais têm a propriedade da falta de memória;
- b) Prove que qualquer variável aleatória não-negativa que tenha a propriedade falta de memória tenha distribuição exponencial para algum parâmetro $\lambda > 0$. (Isso é mais fácil se você assumir que a função $G(x) = \mathbb{P}(X \ge x)$ é diferenciável em $[0, \infty)$, assim você pode fazer essa suposição se você não conseguir um argumento mais geral).

5 — Dado uma variável aleatória X que é independente de si própria, mostre que X é constante com probabilidade 1.

6 — Considere duas funções mensuráveis $f_1, f_2 : \mathbb{R} \to \mathbb{R}$. Prove que se X_1 e X_2 são v.a.'s independentes, então $Y_1 = f_1(X_1)$ e $Y_2 = f_2(X_2)$ também são v.a.'s independentes.

7 — Dado $\epsilon > 0$, e deixe X_i , $i \ge 1$ ser uma sequência não negativa de variáveis aleatórias independentes tais que $\mathbb{P}(X_i > \delta) > \epsilon$ para todo i. Prove que com probabilidade 1:

$$\sum_{i=1}^{\infty} X_i = \infty.$$

8 — Lei zero-um de Kolmogorov para variáveis aleatórias

Suponha que $(X_n : n \in \mathbb{N})$ é uma sequência de variáveis aleatórias independentes, defina a σ -álgebra caudal de $(\sigma\langle X_n\rangle : n \in \mathbb{N})$ por

$$\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(X_n, X_{n+1}, \ldots),$$

e mostre que $\mathcal T$ contém somente eventos de probabilidade 0 ou 1. Mais ainda, mostre que toda variável aleatória mensurável com respeito a $\mathcal T$ é constante quase certamente.

9 — Considere $\{Z_n, n \geq 1\}$ serem variáveis aleatórias independentes, e mostre que o raio de convergência R da série de potências $\sum_{n=1}^{\infty} Z_n x^n$ é constante com probabilidade 1, onde

$$R = \left(\limsup |Z_n|^{1/n}\right)^{-1}.$$

10 — Variáveis Aleatórias Discretas Independentes

a) Mostre que se X e Y são variáveis aleatórias tomando valores inteiros independentes, então

$$\mathbb{P}(X+Y=n) = \sum_k \mathbb{P}(X=k) \, \mathbb{P}(Y=n-k).$$

- b) Dadas X e Y variáveis aleatórias independentes de Poisson com parâmetros λ e μ respectivamente. Prove que X+Y é uma variável aleatória de Poisson com parâmetro $\lambda+\mu$.
- c) Dadas X e Y variáveis aleatórias independentes com distribuição Binomial de parâmetros (n,p) e (m,p) respectivamente. Prove que X+Y é uma variável aleatória Binomial com parâmetro (n+m,p).

- **11 Convolução** Sejam X e Y v.a.'s independentes com funções de distribuição F_X e F_Y respectivamente. Lembre que a distribuição conjunta de X, Y como a medida ν em $(\mathbb{R}^2,\mathcal{B}(\mathbb{R}^2))$ dada por $\nu(B)=\mathbb{P}((X,Y)\in B)$. Denote por μ_X e μ_Y as distribuições de X e Y respectivamente, dadas por $\mu_X(A)=\mathbb{P}(X\in A)$ e $\mu_Y(A)=\mathbb{P}(Y\in A)$.
 - a) Mostre que $\nu=\mu_X\times\mu_Y$, e conclua (Fubini) que se $\varphi:\mathbb{R}^2\to\mathbb{R}$ é ν -integrável, então

$$\mathbf{E}[\varphi(X,Y)] = \int\!\int \varphi(x,y) dF_X(x) dF_Y(y) = \int\!\int \varphi(x,y) dF_Y(y) dF_X(x);$$

b) Use o item anterior para mostrar que

$$F_{X+Y}(t) = \mathbb{P}(X+Y \leq t) = \int F_X(t-y)dF_Y(y) = \int F_Y(t-x)dF_X(x).$$

(A medida $\lambda(\cdot)$ tal que $\lambda((-\infty,t]) = F_{X+Y}(t)$ é conhecida como *convolução* das mediadas μ_X e μ_Y e denotada por $\lambda = \mu_X * \mu_Y$.)

12 — Mostre que se X e Y são variáveis aleatórias absolutamente contínuas com densidade f_X e f_Y respectivamente, então Z = X + Y é absolutamente contínua com densidade

$$f_{\mathsf{Z}}(z) = \int_{\mathbb{R}} f_{\mathsf{X}}(x) f_{\mathsf{Y}}(z-x) dx = \int_{\mathbb{R}} f_{\mathsf{X}}(z-x) f_{\mathsf{Y}}(y) dy =: f_{\mathsf{X}} * f_{\mathsf{Y}}(z).$$

13 — Mostre que se T_1, T_2, \ldots são variáveis aleatórias i.i.d. com distribuição $\operatorname{Exp}(\lambda), \lambda > 0$, então $S_n = T_1 + \cdots + T_n$ possui distribuição Gama com parâmetros $n \in \lambda$. Ou seja, S_n tem densidade

$$f_{S_n}(t) = \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!}.$$

14 — Com as mesmas hipóteses do exercício anterior, defina para $t \geq 0$ a variável aleatória $N(t) = \max\{n \geq 0: S_n \leq t\}$, com N(t) = 0 se $T_1 > t$. Mostre que N(t) tem distribuição de Poisson de parâmetro λt . Ou seja

$$\mathbb{P}(N(t) = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}.$$

* 15 — Outra construção da Distribuição de Cantor

Dadas v.a.'s $Y_n,\ n\geq 1$, i.i.d. tais que $\mathbb{P}(Y_n=1)=\mathbb{P}(Y_n=0)=1/2$, defina

$$Y = \sum_{n=1}^{\infty} \frac{2Y_n}{3^n}$$

- a) Prove que a função de distribuição F_Y é contínua.
- b) Prove que F_Y é diferenciável q.c. com derivada igual a 0 q.c. (Dica: Prove que F_Y é constante em qualquer intervalo contido no complemento do conjunto de Cantor.)
- c) Dado μ_Y a distribuição de Y. E m a medida de Lebesgue na reta real. Prove que μ_Y e m são mutualmente singulares. Ou seja que existe um conjunto de Borel A com m(A)=0 e $\mu_Y(A^c)=0$.

16 — Dadas X e Y duas variáveis aleatórias, não necessariamente definidas no mesmo espaço de probabilidade, diremos que a variável aleatória Y estocasticamente maior que X (ou que Y domina estocasticamente X), denotado por $X \subseteq Y$, se $\mathbb{P}[X \subseteq x] \ge \mathbb{P}[Y \subseteq x]$ para todo $x \in \mathbb{R}$.

Tome então X e Y duas variáveis aleatórias tais que $X \preceq Y$, e mostre que existem variáveis aleatórias X^* e Y^* definidas no mesmo espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P})$ tais que $F_{X^*} = F_X$, $F_{Y^*} = F_Y$ e $X^*(\omega) \leq Y^*(\omega)$ para todo $\omega \in \Omega$.

Esperança

17 — Dada uma v.a. integrável X, mostre que

a) Se X é positiva, então

$$\mathbf{E}(X) = \int_0^\infty \mathbb{P}(X > t) dt;$$

b) De modo geral, para X não necessariamente positiva

$$\mathbf{E}(X) = \int_0^\infty \mathbb{P}(X > t) dt - \int_{-\infty}^0 \mathbb{P}(X < t) dt.$$

18 — Mostre que para variáveis aleatórias discretas,

$$\mathbf{E}X = \sum_{k=1}^{\infty} x_k \mathbb{P}(x = x_k), \tag{1}$$

se a série é absolutamente convergente

19 — Dê exemplos de variáveis aleatórias X e Y definas em [0,1] com a medida de Lebesque tal que $\mathbb{P}(X > Y) > 1/2$, mas $\mathbf{E}(X) < \mathbf{E}(Y)$.

- **20** Suponha que X_1, X_2, \ldots é uma sequência de variáveis independentes em (Ω, F, P) . Mostre que as duas famílias X_1, X_3, X_5, \ldots e X_2, X_4, X_6, \ldots são independentes.
- **21** Prove a Desigualdade de Cauchy-Schwarz: dadas duas variáveis aleatórias X e Y, temos

$$|\mathbf{E}XY| \le \sqrt{\mathbf{E}[X^2]\mathbf{E}[Y^2]},\tag{2}$$

e a igualdade ocorre se e somente se $X=\alpha Y$ ou $Y=\alpha X$, para alguma constante $\alpha\in\mathbb{R}.$

22 — O coeficiente de correlação de Pearson de duas variáveis aleatórias $X, Y \in L_2$ é definido como

$$\rho(X,Y) = \frac{Co\nu(X,Y)}{\sigma_X\sigma_Y},$$

onde $\sigma_X = \sqrt{Var(X)}$ e $\sigma_Y = \sqrt{Var(Y)}$ são os desvios-padrão das variáveis x e Y, respectivamente. Com esta definição em mente, mostre que

- a) $-1 \le \rho(X, Y) \le 1$;
- b) $\rho(X,Y)=1$ se, e só se, existe $\alpha>0$ e $\beta\in\mathbb{R}$ tal que $Y=\alpha X+\beta$;
- c) $\rho(X,Y) = -1$ se, e só se, existe $\alpha < 0$ e $\beta \in \mathbb{R}$ tal que $Y = \alpha X + \beta$;
- **23 Revisão e ajuda para o próximo exercício** Seja $X_n, n \ge 1$ uma sequência de variáveis aleatórias. Mostre que
 - a) se $\sum_n X_n$ converge quase-certamente e $|\sum_{k=1}^n X_k| < Y$, para todo $n \ge 1$ e alguma v.a. Y integrável, então $\sum_n X_n$ é integrável, cada X_n é integrável, e $\mathbf{E}(\sum_n X_n) = \sum_n \mathbf{E} X_n$;
 - b) se $\sum_n \mathbf{E}|X_n| < \infty$ então $\sum_n X_n$ é quase certamente absolutamente convergente e integrável, e $\mathbf{E}(\sum_n X_n) = \sum_n \mathbf{E} X_n$.
- **24** Função Geradora de Momentos Dada uma v.a. X defina $M_X(t) = \mathbf{E}[e^{tX}]$, conhecida como função geradora de momentos de X. Faça $I = \{t \in \mathbb{R} : M_X(t) < \infty\}$ e mostre que
 - a) I é um intervalo (possivelmente degenerado) contendo 0;
 - b) Se 0 pertence ao interior de I, então X possui k-ésimo momento para todo $k \in \mathbb{N}$;
 - c) $M_X(t)$ é uma função contínua e convexa em I;
 - d) Se 0 pertence ao interior de I, $M_X(t)$ é diferenciável no interior de I e $M_X^{(k)}(0) = \mathbf{E}X^k$, justificando o nome da função ($f^{(k)}(t)$ denota a k-ésima derivada de f);

- $\textbf{25} \textbf{Convergência de Geradoras de Momentos} \ \text{Seja} \ X_n, \ n \ \geq \ 1 \ \text{uma sequência de v.a.'s i.i.d., com média 0, variância comum } \sigma^2 \ e \ M_{X_1}(t) \ \text{finita em um intervalo aberto em torno de 0, e Z} \sim \text{Normal}(0,1).$
 - a) Calcule $M_Z(t)$;
 - b) Mostre que se $M_n(t)$ é a geradora de momentos de $S_n/\sigma\sqrt{n}$, onde $S_n=X_1+\cdots+X_n$, então

$$M_n(t) = \left\lceil M_{X_1} \left(\frac{t}{\sigma \sqrt{n}} \right) \right\rceil^n;$$

c) Mostre que $M_n(t) \to M_Z(t)$ para todo $t \in \mathbb{R}$ quando $n \to \infty$.