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Abstract Functionally diverse communities can adjust
their species composition to altered environmental condi-
tions, which may influence food web dynamics. Trait-based
aggregate models cope with this complexity by ignoring
details about species identities and focusing on their func-
tional characteristics (traits). They describe the temporal
changes of the aggregate properties of entire communities,
including their total biomasses, mean trait values, and trait
variances. The applicability of aggregate models depends
on the validity of their underlying assumptions that trait
distributions are normal and exhibit small variances. We
investigated to what extent this can be expected to work by
comparing an innovative model that accounts for the full
trait distributions of predator and prey communities to a
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corresponding aggregate model. We used a food web struc-
ture with well-established trade-offs among traits promoting
mutual adjustments between prey edibility and predator
selectivity in response to selection. We altered the shape of
the trade-offs to compare the outcome of the two models
under different selection regimes, leading to trait distribu-
tions increasingly deviating from normality. Their biomass
and trait dynamics agreed very well for stabilizing selec-
tion and reasonably well for directional selection, under
which different trait values are favored at different times.
However, for disruptive selection, the results of the aggre-
gate model strongly deviated from the full trait distribution
model that showed bimodal trait distributions with large
variances. Hence, the outcome of aggregate models is reli-
able under ideal conditions but has to be questioned when
confronted with more complex selection regimes and trait
distributions, which are commonly observed in nature.

Keywords Fitness gradient · Communities as complex
adaptive systems · Moment closure for trait-based
aggregate model approaches · Multimodal trait
distributions · Lumpiness in pattern formation and
self-organization · Shape of trade-offs and stabilizing and
disruptive selection

Introduction

Diverse ecological communities can adjust their composi-
tion and corresponding (mean) properties to local environ-
mental conditions, which may in turn alter their dynamics.
To investigate this complex but important causal chain, ecol-
ogists have increasingly advocated trait based approaches
(Leibold and Norberg 2004; Webb et al. 2010). They depict
species by their functional traits and corresponding trait
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values. The heritable trait variation existing within and
among species can be represented by a single continuous
trait distribution that may change in response to natural
selection. This change may proceed mainly through species
sorting, as often assumed in discrete approximations of
full trait distribution (FTD) models (Norberg et al. 2001;
Bruggeman and Kooijman 2007; Merico et al. 2009). How-
ever, such multispecies models require a high number of
species entities, i.e., state variables, to reduce potential arte-
facts that may arise from assigning a priori exact trait
values to the species present. This increases model complex-
ity and computational effort and may preclude a detailed
understanding of the feedback between biomass and trait
dynamics.

In order to turn intractable exact equations into tractable
approximate equations, theoretical ecologists developed
aggregate models. They describe the temporal changes of
the aggregate properties of an entire community, such as
its total biomass, mean trait value and trait variance, in
response to selection. The mean trait value and trait vari-
ance correspond to the first and second central moments
of the trait distribution and reflect the average strategy and
the overall functional diversity of the community (Wirtz
and Eckhardt 1996; Merico et al. 2009; Tirok et al. 2011)
or functional group (Norberg et al. 2001; Terseleer et al.
2014). However, their temporal changes generally depend
on higher-order moments, particularly the third and fourth
central moment (related to skewness and kurtosis) of the
trait distribution. These are usually neglected or estimated
from lower-order moments by assuming trait values to be
normally distributed and trait variances to be small (Wirtz
and Eckhardt 1996; Merico et al. 2009; Tirok et al. 2011;
Terseleer et al. 2014).

The assumption of such a narrow unimodal trait distribu-
tion is generally valid under stabilizing selection promoting
the dominance of species with very similar trait values as
seen in models (Merico et al. 2009) and observed, e.g., dur-
ing blooms of cyanobacteria (Scheffer et al. 1997) or pen-
nate diatoms (Horn et al. 2011) in freshwater phytoplankton.
However, temporal changes in abiotic forcing (Fox et al.
2010; Sommer et al. 2012) or internal feedback mechanisms
(e.g., biomass-trait feedback, Tirok and Gaedke 2010 or
eco-evolutionary dynamics, Becks et al. 2010) may strongly
alter the selection pressure on natural communities within
ecological time, giving rise to directional or even disruptive
selection. Under these conditions, the shape and variance of
the trait distributions are expected to differ strongly from a
narrow unimodal one, questioning the reliability of aggre-
gate models. For example, under directional selection, trait
distributions should exhibit skewness because different trait
values are favored at different times, while disruptive selec-
tion will promote the co-occurrence of two greatly different

strategies, giving rise to bimodal trait distributions with
large variances. In such cases, species with trait values much
distant from the current mean trait value are frequently
abundant, so that the mean trait value does not represent the
majority of the community. According to Jensen’s inequal-
ity, the evaluation of functions at their mean trait value
is not appropriate if the trait distributions exhibit large
variances and if functional relationships are strongly non-
linear, as generally found in nature. Even when accounting
for a second-order approximation, as it is done in aggre-
gate models, the truncation of a Taylor expansion after the
second term will strongly bias the results when the higher-
order derivatives do not vanish and the trait variance is
large.

We thus reevaluated the reliability of the aggregate model
approach for different selection regimes. Following empir-
ical evidence (Tirok and Gaedke 2007), we considered a
predator-prey system in which prey species vary in their
intrinsic growth rates and vulnerabilities to predation, while
predator species differ in respect to their prey selectivity
and ability to graze efficiently on low prey densities, and
we assumed corresponding trade-offs between the traits. To
account for the FTD of the prey and predator communities,
we generalized a multispecies predator-prey model (Tirok
and Gaedke 2010; Bauer et al. 2014) to one that considers
a continuum of trait values. We then derived a correspond-
ing aggregate model from the FTD model using a moment
closure technique based on the assumption of normally dis-
tributed trait values. Finally, we compared the temporal
dynamics and long-term behavior of the two models across a
set of different trade-off shapes that correspond to different
selection regimes. In contrast to multispecies and aggregate
models, our FTD model does not make any assumptions
about the exact trait values present and the shape of the
trait distributions, which confers a great generality to this
innovative approach.

We show that the aggregate model works well under
strongly stabilizing selection but increasingly lacks accu-
racy when the selection regime changes towards more
directional or even disruptive selection. It predicts under
directional selection very similar temporal averages and
types of dynamics of the biomasses and mean trait val-
ues, but accumulates large errors in the trait variances
and timescale of the biomass-trait feedback. Under dis-
ruptive selection, the aggregate model entirely fails to
match the results of the FTD model, showing very dif-
ferent temporal averages and dynamics of all aggregate
properties of both communities. Indeed, the FTD model
reveals strongly skewed or bimodal trait distributions with
large variances, which the aggregate model is unable
to accommodate, displaying very different alternative
states.
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Methods

The first two subsections describe the two model
approaches we are going to compare under different trade-
off shapes: a full trait distribution (FTD) model and a
corresponding aggregate model version. In the third subsec-
tion, we explain how trends in the shape of the trade-off
functions alter the selection regime from stabilizing, over
directional, to disruptive selection. Finally, we outline the
analyses performed.

Full trait distribution model

Building on previous work (Tirok and Gaedke 2010; Tirok
et al. 2011; Bauer et al. 2014), we used a modification of
the classical Rosenzweig-MacArthur predator-prey model
(Rosenzweig and MacArthur 1963) to simulate a continuous
set of predator and prey species differing in their selec-
tivity ω and edibility φ, respectively. Hence, the predators
can be more or less selective and the prey can be more or
less susceptible to predation. The functional traits of both
trophic levels determine the grazing rate g of each preda-
tor on each prey species and adhere to well-established
trade-offs. The prey’s edibility trades off with their intrinsic
growth rate r ′, so that r ′ becomes higher the more edible a
prey is. The predator’s selectivity trades off with their half-
saturation constant M so that a more selective predator has
a lower half-saturation constant (for details see “Trade-offs
and selection regimes” section). To merge intra- and inter-
specific trait variation, we generalized the multispecies
predator-prey model previously used (Tirok and Gaedke
2010; Bauer et al. 2014) to one that considers a continuum
of trait values. Our corresponding FTD model allows any
possible community composition by tracking the biomass
of every phenotype within a finite trait range. Hence, we do
not make any assumptions in advance about the species’ or
genotypes’ exact trait values, or the shape of the communities
trait distributions.

The prey (A) and predator (C) community biomasses
change according to the following set of equations:

∂A(φ, t)

∂t
= (r(φ) + B(φ)) A −

total consumption by predators
︷ ︸︸ ︷
∫

g(φ, ω)Cdω + IA

∂C(ω, t)

∂t
=

(

e

∫

g(φ, ω)dφ

︸ ︷︷ ︸

total prey grazed

−d + B(ω)
)

C + IC (1)

where e is the conversion efficiency, d the predator mortal-
ity rate, and IA and IC the prey and predator immigration

rates, respectively, preventing complete exclusion of any
single trait value in the FTD model. Since we consider pre-
dominantly predator-prey interactions in invertebrates like
phytoplankton and zooplankton communities, which often
show dormancy, immigration may not only account for
external input of trait variation but also capture germination
from seed banks and resting stages, which are ubiquitous
mechanisms maintaining functional diversity. We assumed a
common carrying capacity, K , for the prey community and
a type II functional response (Holling 1965) for the preda-
tors. The growth rate r for a single prey type and the grazing
rate g for a single predator type are given by:

r(φ) = r ′(φ)
(

1 −
∫

� any prey

A(φ′)dφ′

K
︸ ︷︷ ︸

)

interspecific competition

g(φ, ω) = gm

q(φ, ω)A(φ)

M(ω) +
∫

q(φ′, ω)A(φ′)dφ′
︸ ︷︷ ︸

sum over all prey

, (2)

where r ′ is the maximum intrinsic growth rate of the prey,
and M , q, and gm are the half-saturation constant, grazing
preference, and maximum grazing rate of the predators. The
index φ′ denotes that the integration is done over all prey
species, independent of φ, that is, of the particular species
for which the growth or grazing rate is calculated. The pref-
erence function q increases with decreasing values of ω and
increasing values of φ and is given by:

q(φ, ω) = [

1 + exp (−b(φ − cω))
]−1

. (3)

Hence, non-selective predators (ω ≈ 0) have high q

values for all prey species, whereas more selective ones
(ω � 0) have high q values only for a more restricted
prey spectrum (φ � 0), the range of which is quantified
by the parameter c. The value of b determines the sharp-
ness of the transition of the q values from non-preferred to
preferred prey species. The boundary function B in Eq. 1
accounts for all ecologically relevant processes, such as size
and metabolic constraints, that restrict trait values to a bio-
logically feasible range, which we take to be between [0, 1]
since, e.g., prey species cannot be more than fully edible
(φ = 1) or less than entirely inedible (φ = 0). The boundary
function B is modeled as:

B(x) = −(exp(−wx) + exp(w(x − 1))), (4)

where x refers to the edibility or selectivity of the respec-
tive prey or predator species. The parameter w determines
the overall shape of B and was set to 40 so that B is
very close to zero over most of the trait range but gets
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increasingly negative close to the minimum (x = 0) and
the maximum (x = 1) trait values, making trait values at
the extremes unfavorable. The boundary function B pre-
vents the FTD model to exhibit any edge effects such as
non-smooth trait distributions, which would arise if we sim-
ply restrict the feasible trait range, and it keeps the FTD
model and corresponding aggregate model fully compara-
ble. The implementation of a boundary function is akin
to methods used in evolutionary biology where general
fitness functions are implemented that give rise to over-
all stabilizing selection restricting standing trait variation
(Doebeli et al. 2007; Baptestini et al. 2009) and changes
in mean trait values (Saloniemi 1993; Abrams 2006) of
populations or communities to their ecologically feasible
ranges.

In building this model, we assume a strictly trait-based
approach, where organisms are characterized exclusively
by their trait values and all individuals produce only new
individuals with exactly the same trait value. This is in
line with communities predominantly composed by asex-
ually reproducing unicellular organisms or small meta-
zoans, dominating marine and freshwater ecosystems (Som-
mer et al. 2012). Hence, we adopted parameter values
that are typical of a system consisting of phytoplankton
and ciliates (protozoans; cf. Tirok and Gaedke 2007), in
which cell sizes increase with trophic level and so, by
allometry, weight-specific rates decrease with trophic level
(Tang 1995; Hansen et al. 1997). For a detailed descrip-
tion of the parameters and corresponding values used,
see Table 1.

At every moment in time, the FTD model yields the
biomass densities of the prey and predator communities as
a function of their respective traits. In order to describe
general changes in the magnitude, location, and shape of
these trait distributions, we consider the three aggregate

properties of those communities: total biomasses, mean trait
values, and trait variances, defined by:

AT =
∫

A(φ)dφ

φ̄ = 1

AT

∫

φ A(φ)dφ

νφ = 1

AT

∫

(φ − φ̄)2A(φ)dφ . (5)

with analogous expressions for predator community’s quan-
tities (CT , ω̄, and νω). The mean trait values may reflect
the most abundant species in the prey and predator com-
munities, whereas the trait variances denote their functional
diversities.

Aggregate model

The FTD model describes the temporal changes in the
biomass density of each trait value, from which the aggre-
gate properties of the prey and predator communities are
calculated. Alternatively, one may focus directly on the tem-
poral changes of the aggregate properties using moment
approximation methods. In this case, the dynamics of the
FTD model is approximated by a corresponding aggregate
model which tracks only the changes in the total biomasses
(AT and CT ), mean trait values (φ̄ and ω̄), and trait vari-
ances (νφ and νω) of the prey and predator communities.
Following previous studies (Norberg et al. 2001; Savage
et al. 2007), we formulated an aggregate model that can
be derived through a moment approximation, that trun-
cates the moment expansion of the trait distribution at the
second order, assuming trait variances to be small or higher-
order derivatives of the species’ fitness, i.e., of its per-capita
net growth rate, to vanish (for a detailed derivation see
“Appendix A: Derivation of the aggregate model”). In

Table 1 Description and
values of parameters used Symbol Description Value Unit

K Prey carrying capacity 10 g Cm−2

r̄ Mean growth rate of prey 9/8 day−1

mr Ratio between maximum and minimum growth rate 8 –

d Predator mortality rate 0.15 day−1

e Predator growth efficiency 0.2 −
gm Maximum grazing rate 2 day−1

mM Ratio between minimum and maximum half-saturation constant 1/8 –

M−1 Mean grazing rate of predators at low prey densities ln(8)
7 g Cm−2

b Trade-off exponent for sharpness of the predator preference q 6 –

c Trade-off coefficient relating φ and ω in the preference q 0.9 –

IA Prey immigration rate 0.0001 g Cm−2day−1

IC Predator immigration rate 0.00002 g Cm−2day−1

w Steepness of the boundary function 40 −
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order to derive self-contained expressions for the tempo-
ral development of the aggregate properties, we applied
a moment closure which assumes trait values to be nor-
mally distributed (cf. Wirtz and Eckhardt 1996; Merico et al.
2009; Tirok et al. 2011). The aggregate properties change
according to the following set of equations:

dAT

dt
= AT

(

RA(φ̄) + νφ

2

d2RA

dφ2

∣

∣

∣

∣

φ=φ̄

)

+ IA

dCT

dt
= CT

(

RC(ω̄) + νω

2

d2RC

dω2

∣

∣

∣

∣

ω=ω̄

)

+ IC

dφ̄

dt
= νφ

dRA

dφ

∣

∣

∣

∣

φ=φ̄

+ IA

AT

(

1

2
− φ̄

)

dω̄

dt
= νω

dRC

dω

∣

∣

∣

∣

ω=ω̄

+ IC

CT

(

1

2
− ω̄

)

dνφ

dt
= ν2

φ

d2RA

dφ2

∣

∣

∣

∣

φ=φ̄

+ IA

AT

[

1

12
− νφ +

(

1

2
− φ̄

)2
]

dνω

dt
= ν2

ω

d2RC

dω2

∣

∣

∣

∣

ω=ω̄

+ IC

CT

[

1

12
−νω+

(

1

2
−ω̄

)2
]

, (6)

where RA and RC are the instantaneous per capita net
growth rates of the prey and the predators evaluated at their
respective mean trait values φ̄ and ω̄:

RA(φ) = r(φ) − CT

(

G(φ, ω̄) + νω

2

∂2G

∂ω2

∣

∣

∣

∣

ω=ω̄

)

+ B(φ)

RC(ω) = e AT

(

G(φ̄, ω)+ νφ

2

∂2G

∂φ2

∣

∣

∣

∣

φ=φ̄

)

−d+B(ω), (7)

and G is the aggregate grazing function, defined below.
Changes in the prey and predator community biomasses

follow the same functional forms as in the FTD model,

while changes in the mean traits and trait variances are
determined, respectively, by the first and second derivatives
of the per capita net growth rates. Hence, the mean trait
values change with a speed proportional to the local fitness
gradient, i.e., the first derivative of the per-capita net-growth
rate evaluated at the respective mean trait value, and to the
trait variance. Furthermore, Eq. 6 includes additional terms
to account for non-linear averaging and changes in the loca-
tion and width of the assumed normal trait distributions
due to immigration (cf. “Appendix A: Derivation of the
aggregate model” and Norberg et al. 2001). In accordance
with the FTD model, the immigration rates IA and IC pre-
clude the trait variance from becoming exactly zero in the
aggregate model, whereas the boundary function B con-
strains changes in the mean trait values φ̄ and ω̄ to the
delimited range and ensures that the trait variance vanishes
when the mean trait value approaches an extreme (4). The
growth and grazing functions of the aggregate model are
given by

r(φ) = r ′(φ)

(

1 − AT

K

)

G(φ, ω) = gm q(φ, ω)

M(ω)+
(

q(φ̄, ω)+ νφ

2
∂2q(φ,ω)

∂φ2

∣

∣

∣

φ=φ̄

)

AT

. (8)

This model represents the closest aggregate model one
can build using the same assumptions as in the FTD model.
The two model approaches fundamentally differ in the way
the aggregate properties of the trait distribution change. In
the aggregate model, the changes are consequences only of
the fitness landscape, i.e. the per-capita net-growth rate as a
function of the respective trait, around the current mean trait
value, whereas the FTD model accounts for the entire fitness
landscape. The fitness landscape at a given point in time can

Fig. 1 Difference between the FTD and aggregate model approach.
a Biomass density distribution with respect to the edibility (φ) of the
prey at a certain moment in time. b Corresponding per capita net
growth rate as a function of the trait φ (fitness landscape), calculated
using the FTD model. The vertical dashed line represents the mean
trait value and the arrow indicates the direction of its change. In the
aggregate model, the rate of change of the mean trait is proportional to

the value of the fitness gradient at the mean trait value (depicted by the
slope of the tangent black line), while for the FTD model the contri-
butions of all trait values are summed over. This implies in the present
example that the temporal changes in the mean trait value strongly dif-
fer in magnitude and even direction due to the high growth rates at high
values of φ
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be rather complex due to the non-linearity usually inherent
to the feeding relationships and the trade-offs underlying the
system. As a result, in the FTD model, the mean trait value
may change in the opposite direction of the gradient of the
fitness landscape evaluated at the mean trait value (Fig. 1).

Trade-offs and selection regimes

Species can use resources either to increase reproduction
or to counteract stress, like grazing losses (Strauss et al.
2002; Norberg 2004). For this reason, we assume the max-
imum growth rate of the prey to increase with its edibility,
so that fast growing prey species are highly vulnerable to
grazing and vice versa. In addition, the predators’ capacity
to exploit many different food items, i.e., its selectivity, may
trade off with the ability to exploit low prey densities (cf.
Straub et al. 2011). Hence, we assume the half-saturation
constant of the predators to attain its maximum for the least
selective species, for which M = Mmax , while the most
selective species has a half saturation constant mM times
smaller. The explicit expressions of the trade-offs are given
by the following set of equations:

r ′(φ) = rmin(β)
(

1 + (mr − 1) φβ
)

M(ω) = Mmax(β)
(

1 + (mM − 1) ωβ
)

, (9)

where β determines the shape of the trade-offs, which is
linear when β = 1 (Fig. 2a–c).

We systematically altered the shape of the trade-offs to
manipulate the selection regime on the prey and predator
communities (cf. Levins 1962; Abrams 2006). When β is
small, r ′ increases quickly for small φ, but slowly for high
φ, and M declines steeply at low ω, but gently for high
ω (Fig. 2a). This gives rise to stabilizing selection at both
trophic levels, in which intermediate values of both φ and

ω are favored, since they experience relatively low costs
for their relatively high growth and grazing rates. For large
values of β, the selection pressure is reversed because r ′
increases slowly at low φ and quickly at high φ, while M

decreases slowly at low, but steeply for high ω (Fig. 2c),
thus favoring both extreme trait values in both trophic lev-
els. This constitutes a case of disruptive selection, in which
intermediate trait values are maladapted, since they experi-
ence relatively high costs for their relatively low growth and
grazing rates. Intermediate values of β provoke a balance
between costs and benefits along the trait range, where each
species may be favored at a given moment in time depend-
ing on the current prey and predator biomasses, resulting
in recurrent changes in the dominant trait value and thus
directional selection (Fig. 2b). Hence, increasing β from
low to high values changes the selection regime on the
prey and predator communities from stabilizing to disrup-
tive selection, thereby altering the expected shape of the trait
distributions (Fig. 2).

We can depict the expected long-term effect of the
changes in β on the shape of the trait distributions by look-
ing at the effective carrying capacity of the rate of change
of the prey biomasses. The latter can be expressed as (cf.
Eqs. 1 and 2):

∂A(φ, t)

∂t
=

[

(

r ′(φ)−η(φ)+B(φ)
)

(

1− AT

K ′(φ)

)]

A+ IA,

(10)

where K ′(φ) = K
(

1 + B(φ)−η(φ)
r ′(φ)

)

denotes the effective

carrying capacity of the prey, which accounts for the effects
of both the per capita death rate by predation η(φ) =
gm

∫ q(φ,ω)C(ω)

M(ω)+∫

q(φ′,ω)A(φ′)dφ′ dω and the intrinsic growth rate

r ′(φ). The functions η and r ′ are monotonically increasing

Fig. 2 The top panels show the
trade-off relations between the
maximum growth rate (r ′, green
solid line) and edibility (φ), and
between the grazing
half-saturation constant (M ,
blue dashed line) and selectivity
(ω) for three values of β. The
arrows in panels a and c indicate
the direction of selection on
traits, in comparison to the linear
case. The bottom panels show
how the shape of the trade-offs
shapes the effective carrying
capacity K ′ of prey, which can
be thought of as an expected trait
distribution. It was calculated
assuming a total biomass of K/2
for prey and K/3 for predators,
with uniform trait distributions
at both trophic levels
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in φ, but only r ′ changes with β. This formulation makes
explicit the relative roles of the intrinsic growth rate and pre-
dation for overall prey competition, i.e., K ′, and shows that
the long-term trait distribution of the prey is expected to be
strongly concentrated when β is low (Fig. 2d), whereas it
should present peaks at both low and high trait values for
large β, giving rise to large trait variances (Fig. 2f). In addi-
tion, we expect the trait distributions to be on average rather
uniform for β ≈ 1 (Fig. 2e).

To avoid any confounding effects when changing the
parameter β, we maintained the relative growth and grazing
rates, i.e., the ratios between the maximum and minimum
growth rates (mr ) and half-saturation constants (mM ), con-
stant within each trophic level. In addition, we chose the
dependence of rmin and Mmax on β in such a way that,
given a homogeneous distribution of traits, the averages
of the prey’s maximum growth rate, r̄ = ∫ 1

0 r ′(φ)dφ, and

the predator’s grazing rate at low prey densities, (
gm

M
) =

∫ 1
0

gm

M(ω)
dω, were constant. This is important because, oth-

erwise, the direct increase or decrease in prey productivity
or in sensitivity of predators to the amount of prey would
shadow any effect of changes in β. These assumptions lead
to:

rmin(β) = r̄

(

1 + (mr − 1)

1 + β

)−1

Mmax(β) = 2F1

(

1, 1
β
, 1 + 1

β
, mM

)

M−1
, (11)

where 2F1 is the hypergeometric function.

Numerical simulations and data analysis

We evaluated the suitability of the aggregate model under
different selection regimes using numerical simulations for
different values of β. As initial conditions, we assumed
total biomasses in each trophic level to be 1 g Cm−2 (cf.
Gaedke and Wickham 2004) and both traits to be normally
distributed with means of 0.5 or 0.9 and variances of 1/400.
These two initial conditions led to different long-term solu-
tions, so we explored the extent of these bistable regions
and how they change with β. We continued solutions in
these regions using the final state of a simulation as ini-
tial condition for the next one with a slightly modified
value of β, hence revealing the extent of the range of val-
ues of β where bistability is present. The FTD model and
its aggregate properties were numerically integrated using a
discretization along the trait axes (n = 100).

We evaluated the agreement between the two model
approaches by comparing the temporal dynamics and long-
term behavior of their aggregate properties as a function of
β. The latter was done by calculating the temporal aver-
age and variation of the community biomasses, the mean

trait values, and the trait variances. We also evaluated the
stability of the predator-prey dynamics by calculating the
coefficient of variation (CV) for both prey and predator
community biomasses. In order to better understand poten-
tial differences between the two model approaches, we
also looked at the trait distributions’ skewness (S) and
(excess) kurtosis (κ), obtained from solutions of the FTD
model, which are directly related to the third and fourth
order central moments. In general, large absolute values of
skewness or kurtosis imply that the shape of the trait distri-
bution strongly deviates from a normal one, highlighting the
importance of higher-order moments.

A small absolute skewness may indicate that the trait
distribution is rather symmetrical, whereas a large absolute
skewness points to a trait distribution possessing a heavy
tail on the right (positive skewness) or left (negative skew-
ness) side of the distribution’s mean trait value. Since we
are mainly interested in the overall magnitude of a trait
distribution’s skewness, rather than its sign, we computed
the average of the skewness’ absolute values over a long
time.

For symmetrical trait distributions, large negative val-
ues of kurtosis (−2 < κ � 0) indicate light tails and
flatness, as seen for uniform and, in its extreme, bimodal
trait distributions, which have most density at the distribu-
tion’s shoulders, i.e., around ±1SD of the mean (DeCarlo
1997). In contrast, large positive values of kurtosis (κ �
0) point toward peaked and heavy-tailed trait distributions,
since this describes the dispersion of density around ±1SD

of the mean (Moors 1986; DeCarlo 1997). High skewness,
however, strongly affects kurtosis values, and the relation-
ship between these measures is hard to disentangle (Blest
2003; Jones et al. 2011). Therefore, we use a measure for
bimodality based on Pearson’s inequality (Pearson 1929):

P(t) = S2(t) − κ(t). (12)

The value of P is maximal for the two-point binomial (P =
2), amounts to 1.2 for a uniform distribution, and to 0 for a
normal distribution (Klaassen et al. 2000). We record how
frequently P surpasses the value of 1.2 over a long time as
evidence for bimodal trait distributions.

Simulations and analyses of the aggregate model were
performed in MATLAB, version 7.13, using solver ode23
for ODEs (The MathWorks Inc., Natick, MA, 2011). We
increased the precision of the solver by setting the absolute
and relative tolerance to 10−9 and 10−12 and the maximum
step size to 0.1. The FTD model was implemented discretiz-
ing the trait axes and solving the resulting system of ODEs
using the Python wrapper odeint provided by SciPy (Jones
et al. 2001) for the LSODA solver contained in the library
ODEPACK (Hindmarsh 1983). The simulation results are
robust to the choice of solver algorithm.
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Results

We tested the performance of the aggregate model under
different selection regime using the full trait distribution
(FTD) model as benchmark. For trade-off shapes arising
from values of β below 0.45, selection is strongly stabiliz-
ing as indicated by unimodal trait distributions with small
trait variances within both prey and predator communities
in the FTD model (Figs. 3, 4, and cf. Fig. 2d). As expected
under such conditions, the two models predict very similar
dynamics and long-term states of the aggregate properties,
in which both edibility and selectivity settle at low values.
The latter are linked to relatively low growth and grazing
rates (Fig. 2) promoting stable biomass dynamics (Fig. 4).
The remaining small differences between the two model
approaches arise from the fact that the trait distributions
in the FTD model are highly skewed and peaked despite
being unimodal (Table 2). However, skewness and peaked-
ness hardly influence the overall model predictions because

of the low trait variances (ν � 1), implying even lower
higher-order moments.

Decreasing the strength of stabilizing selection (β >

0.45) allows prey species with very different trait values to
increase their biomass share in the community of residents,
leading to bimodal trait distributions with high standing
variances in the FTD model (Fig. 3). The outcome of this is
an increase in the mean trait value and thus in productivity
of the prey community, causing lower and higher equi-
librium biomasses of the prey and predator communities,
respectively. In contrast to the FTD model, the aggregate
model predicts much smaller changes with β in the aggre-
gate properties of the prey and predator communities. This
occurs because to achieve a drastic change in the mean
trait value, it is not sufficient that species with extreme trait
values are able to increase their share of the community
biomass. Rather, it is necessary that species with trait values
close to the previously favored one become sufficiently fit
to outcompete the resident species.

Fig. 3 Temporal averages
(lines) and variation (± 1
standard deviation; shades) of
total biomass, mean trait, and
standing trait variance of the
solutions of the FTD (red) and
aggregate (green) models as the
shape of the trade-offs (β) is
varied. All other parameters as
in Table 1. The dotted lines
correspond to alternative
long-term solutions, obtained by
exploring different initial
conditions, leading to distinct
basins of attraction
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Fig. 4 Long-term solutions
show stasis in the biomass and
trait dynamics of the prey and
predator communities under
stabilizing selection (β = 0.2).
Top: Total biomass of prey AT

(green) and predators CT (blue)
for the FTD (left) and aggregate
(right) models. The panels just
below show the mean trait
values and trait variances of the
trait distributions of prey
edibility, φ, and of predator
selectivity, ω, as a function of
time. Bottom: The panel shows
the final trait distribution of prey
(biomass density as a function
of edibility, φ, in green), and
predators (biomass density as a
function of selectivity, ω, in
blue) in the FTD model

Higher values of β (> 0.55) allow fast-growing well
edible prey and selective predator species to recurrently
increase their share. The relatively high growth and grazing
rates (Fig. 2) strongly destabilize the biomass dynamics of
the prey and predator communities in both models, giving
rise to directional selection, in which different trait values
are favored at different times. As a result, both models show
considerable variation in the aggregate properties of the prey
and predator communities over time (Figs. 3 and 5). How-
ever, the transition from stable to unstable dynamics occurs
in the FTD model at a lower value of β than in the aggregate
model, producing substantial differences in their predictions
of the temporal averages of the aggregate properties for val-
ues of β between 0.55 and 0.75. The higher stability of
the aggregate model is due to the way the fitness landscape
changes: the equilibrium trait value of the prey community
established for β < 0.45 is no longer a global maximum, but
still remains a local maximum of the fitness landscape. This
prevents the prey community from adapting its mean trait
value to the currently favored one in the aggregate model.
In contrast, in the FTD model, as well as in nature, it is suf-
ficient that another species exists that is currently more fit
and thus able to increase its share to the total biomass of the
community, even when its trait value is very distant from the
previously favored one.

Under directional selection, the environmental conditions
change sufficiently fast to promote the emergence of skewed
trait distributions with substantial variances in the FTD

model (Fig. 5c). Since the direction of selection is changing
over time, the trait distribution also changes its skewness
between positive and negative values, passing through states
in which it exhibits bimodality and a large variance (see P

in Table 2; Fig. 5b, d). In contrast to the effect of disruptive
selection, these trait distributions are a combined result of
past and present growth and death processes that exist only
temporarily. In comparison to the FTD model, the aggre-
gate model presents much lower trait variances (Fig. 3),
since it is unable to accommodate the simultaneous occur-
rence of only lower and higher trait values, i.e., bimodal trait
distributions. In the aggregate model, the mean trait value
exhibits a period length that is more than two orders of mag-
nitude larger than those in the FTD model, since its rate of
change is proportional to the trait variance.

Despite this major deviation in the period length of
the trait and biomass dynamics, both models show up to
β ≈ 1.8 very similar temporal averages of the biomass
and mean trait values (Figs. 3 and 5). The aggregate model
also depicts correctly the (mutual) trait adjustments of the
prey and predator communities in response to altered selec-
tion pressures: in general, when highly edible (large φ)
species dominate the prey community, the predator commu-
nity changes its composition toward more selective species
(large ω) that exploit the available prey more efficiently
(Fig. 5a, b). Subsequently, the prey community escapes
the enhanced predation pressure by changing its composi-
tion toward less edible species. Since the predators are no
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Table 2 Long-term behavior of the aggregate properties of the FTD
(light gray) and the aggregate (white) models for both trophic levels
(TL) under four distinct selection regimes (4 values of β)

0.2 prey cont. 6 0.12 0.0002 133 0 %

PTL model CV trait

10 5

agg. 5 10 16 0.12 0.0004

predator cont. 3 10 5 0.15 0.0003 54 0 %

agg. 7 10 16 0.16 0.0007

1.0 prey cont. 0.4 0.58 0.023 6.1 24 %

agg. 0.5 0.65 0.0017

predator cont. 0.4 0.35 0.023 4.6 40 %

agg. 0.5 0.38 0.0021

3.0 (II) prey cont. 10 5 0.43 0.16 0.4 100 %

agg. 5 10 16 0.12 0.0005

predator cont. 6 10 5 0.58 0.13 0.4 100 %

agg. 5 10 16 0.13 0.0006

5.0 (I) prey cont. 0.6 0.81 0.024 86 29 %

agg. 0.7 0.96 0.0003

predator cont. 0.4 0.46 0.08 1.6 100 %

agg. 0.2 0.87 0.0003

S

The measures correspond to the numerical solutions shown in Figs. 4,
5, 6 (state I), and 7 (state II). We show the coefficient of variation
of the community biomasses (CV) and the long-term temporal aver-
ages of the mean trait value, trait variance (ν), and absolute skewness
(|S|). We also present the proportion of time when the trait distribu-
tions were bimodal according to Pearson’s measure of bimodality (P ;
see methods, “Numerical simulations and data analysis”). The last two
measures apply only to the FTD model

longer able to control the dominant species, the prey com-
munity biomass increases, whereas the predator commu-
nity biomass decreases (Fig. 5b). The predator community
responds to the altered selection pressure by decreasing its
selectivity (Fig. 5c). The enhanced grazing pressure on the
prey community dampens both, the increase in prey biomass
and the decrease in predator biomass. However, the non-
selective predators grow very slowly and therefore need a
long time to recover. After building up sufficiently high
biomasses, the predators are finally able to control the less
edible prey. This, in turn, results in a shift within the prey
composition toward more edible species, since they are able
to outcompete the less edible ones due to their higher growth
rates (Fig. 5d). From then onwards, the pattern repeats.
As a result of this biomass-trait feedback, both models
predict out-of-phase dynamics between prey and predator
community biomasses. However, the high similarity of the
predictions from the two models under directional selection
strongly rely on immigration (“Appendix B: Model version
with mutation”). When maintaining the trait variance by
trait diffusion instead of immigration, the aggregate model

results no longer match the results of the corresponding
FTD model.

Increasing β to values above 1.8 changes the selection
regime toward more disruptive selection, in which the two
model approaches substantially differ in their predictions
about the temporal dynamics and long-term states of the
aggregate properties (Fig. 3). Although both models exhibit
bistability, the parameter range is much larger for the aggre-
gate model. In one state (“state I”), the aggregate model
features unstable predator-prey dynamics in which the prey
and predator communities exhibit intermediate to high val-
ues of edibility and selectivity, respectively, which is in line
with our findings from the FTD model for values of β up
to 2.4. However, for higher values of β, the two model
approaches strongly differ in their predictions about the
temporal dynamics and long-term states of the aggregate
properties. The FTD model shows complex predator-prey
cycles where high-frequency biomass oscillations are super-
imposed upon low-frequency trait oscillations (Fig. 6; for
an animation of the temporal dynamics see also Online
Resource 1). The prey and predators exhibit phase rela-
tionships of a quarter-period at the high-frequency and of
a half-period at the low-frequency oscillations. In addition,
the trait distributions of the prey and predator communities
often considerably deviate from a normal distribution, dis-
playing recurrently very large variances and skewnesses as
well as bimodality most of the time (Fig. 6a–d, Table 2). As
a result, the effects of typical non-linearities enclosed in the
grazing structure on the temporal development of the lower-
order moments (i.e., aggregate properties) are enhanced by
large higher-order moments. Because of this, the aggre-
gate model here strongly deviates from the FTD model,
predicting regular predator-prey cycles instead of out-of-
phase dynamics, with constantly highly edible prey being
grazed upon by highly selective predators. The latter results
from the fact that the mean trait values of the prey and
predator communities hardly change over time in the aggre-
gate model because they are constrained by local fitness
maximization.

In the alternative state (“state II”), the aggregate model
and the FTD model both achieve stasis in the biomass
and trait dynamics (Fig. 7). However, the aggregate model
entirely fails to match the predictions of the FTD model as
it features low biomasses of non-selective predators graz-
ing on high biomasses of low edibility prey. In contrast, the
FTD model predicts bimodal trait distributions within both
the prey and predator communities, where both low and
high edibility prey, and both non-selective and highly selec-
tive predator species coexist (Fig. 7, Table 2). This results
in prey and predator biomasses which are strongly over-
and underestimated by the aggregate model, respectively.
While this basin of attraction (“state II”; Fig. 3) vanishes in
the FTD model when increasing β to values above 3.5, it
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Fig. 5 Long-term solutions
show recurrent trait shifts in both
prey and predator communities
under directional selection
(β = 1). Top: Total biomass of
prey AT (green) and predators
CT (blue) for the FTD (left) and
aggregate (right) model. The
panels just below show the mean
trait values and trait variances of
the trait distributions of prey
edibility, φ, and of predator
selectivity, ω, as a function of
time. Note the large difference,
i.e., of two orders of magnitude,
in the time scales of the two
types of models. Bottom: The
panels show a sequence of four
snapshots of the trait distribution
of prey (biomass density as a
function of edibility, φ, in
green), and predators (biomass
density as a function of
selectivity, ω, in blue) in the
FTD model. The snapshots
correspond to the times labeled
and marked by vertical dotted
lines in the top left panel

Fig. 6 Long-term solutions
show complex predator-prey
dynamics in the FTD model but
regular cycles in the aggregate
model under disruptive selection
(β = 5), for solutions in the
basin of attraction of “state I”
(see Fig. 3). For detailed
explanations of the panels and
coloring, see legend of Fig. 4
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Fig. 7 Long-term solutions
show stasis in both prey and
predator communities under
disruptive selection (β = 3) for
both models in the “state II”
(Fig. 3) basin of attraction. For
detailed explanations of the
panels and coloring, see legend
of Fig. 4

remains in the aggregate model. In addition, when the alter-
native states are evaluated separately, the aggregate model
predicts less temporal variation in the aggregate properties
than the FTD model, and thus overestimates the stability of
the trait and biomass dynamics.

Discussion

Community ecology is recognizing that standing trait vari-
ation has to be incorporated into models in order to predict
the behavior of food web dynamics (Norberg et al. 2001;
Tirok et al. 2011). However, ecology inherited from popu-
lation genetics the early view that stabilizing or weak direc-
tional selection prevails in natural communities promoting a
distribution of phenotypic traits that follows closely the opti-
mum of the fitness landscape (Lande 1982; Abrams et al.
1993). This prevalent view has facilitated the frequently
made assumption of normally distributed trait values with
small variances in aggregate models (Wirtz and Eckhardt
1996; Merico et al. 2009). However, there is ample empir-
ical evidence for strong directional and disruptive selection
promoting trait distributions much different from a normal
distribution, questioning the strong assumptions made in
aggregate models. For instance, directional selection is evi-
denced by the well-established alterations in phytoplankton
and zooplankton composition (Sommer et al. 2012; Tirok
and Gaedke 2007), where recurrent changes in the abi-
otic and biotic environment favor different species and trait

values at different times (Vasseur and Gaedke 2007; Fox
et al. 2010). Disruptive selection occurs at the population
level (Kingsolver et al. 2001; Martin and Pfennig 2012),
and also at the scale of whole communities where greatly
different strategies coexist, e.g., small (edible) and large
(less edible) phytoplankton species during summer (Som-
mer et al. 2012). As a consequence, a wide range of size
distributions was observed within aquatic (Chisholm 1992;
Tackx et al. 1994; Havlicek and Carpenter 2001; Schartau
et al. 2010) and terrestrial (Maurer et al. 2004; Thibault et al.
2011) communities that exhibited large skewness and mul-
tiple modes. In addition, trait distributions may show very
large variances as exemplified by phytoplankton and zoo-
plankton size distributions (Gaedke 1992; Vergnon et al.
2009; Segura et al. 2013; Downing et al. 2014).

Hence, we investigated the reliability of the aggre-
gate model approach for different selection regimes. As
expected, stabilizing selection resulted in narrow, single-
peaked trait distributions and, thus, the aggregate model
captured the features of the full trait distribution (FTD)
model very well, which is in line with Merico et al. (2009).
Under directional selection, our two models delivered sim-
ilar kinds of oscillations and averages of the biomass and
mean trait values in accordance with Norberg et al. (2001)
and Terseleer et al. (2014). However, the FTD model pre-
dicted much higher trait variances than the aggregate model,
resulting in major discrepancies in the timescales of their
oscillations. This happens because the trait distribution in
the FTD model tunnels from one end of the interval to the
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other without ever having its mode in the middle, because
as soon as selection favors a trait far from that currently
abundant, a population with the now-favored trait expands,
promoting temporarily broad, bimodal trait distributions
(for an animation of the temporal dynamics see Online
Resource 1). The persistently high trait variances in the
FTD model suggest that mutual adjustment between prey
and predators is able to maintain functional trait diversity
at both trophic levels by endogenous forces. In contrast,
in the aggregate model, the mean trait has to follow one
mode, i.e., a local maximum of the fitness landscape, so
that it goes through all intermediate values separating the
fitness peaks whenever the direction of selection changes.
Unfortunately, close to a maximum, the second derivative
is negative, leading to a decline of the trait variance in the
aggregate model approach. Since the variance scales the rate
of change of the mean trait value, trait adaptation slows
down. In order to maintain high trait variances and suffi-
ciently fast trait adaptation in the aggregate model, the mean
trait value needs to stay close to a fitness minimum, where
the second derivative is positive, something the local fitness
maximization approach selects against. Hence, functional
diversity could only be maintained through a strict balance
over time between well- and maladapted mean trait values,
which may rarely occur in both ecological models and natu-
ral systems. The strong constraints of aggregate models thus
promote the loss of trait variance when no other source of
variation is accounted for (Merico et al. 2014). To compen-
sate for this shortcoming, previous studies introduced other
ecological processes, such as additional trade-offs (Tirok
et al. 2011) or trait diffusion mimicking mutation (Merico
et al. 2014) which increases model complexity and may
obscure real processes responsible for the maintenance of
functional diversity.

The systematic underestimation of the trait variance by
aggregate models may cause serious problems when aim-
ing for the quantitative representation of food web dynamics
in real ecosystems. For example, combining the aggre-
gate model approach with observed seasonal forcing likely
results in a mismatch between trait and biomass dynamics,
since the small standing variance does not allow a suffi-
ciently fast adaptation. As a result, the temporal variation
in mean trait values and trait variances is underestimated.
This reasoning is in line with Savage et al. (2007), who
showed that increasing the amplitude or frequency of envi-
ronmental fluctuations, and thus the strength of directional
selection, amplified the oscillations of the mean and vari-
ance and reduced the match between their multispecies
model and its moment closure approximation. Despite this,
aggregate models were successfully incorporated into larger
models used to address more general questions in ecosystem
dynamics (Wirtz and Eckhardt 1996; Terseleer et al. 2014;
Acevedo-Trejos et al. 2015). However, the timescales of

their trait dynamics had to be corrected by fitting the immi-
gration rates needed to obtain the required level of standing
trait variance or by keeping the variance constant. Although
the model of Terseleer et al. (2014) tracked changes in the
biomass and mean cell size of a diatom community quite
well, it strongly underestimated the temporal variation of
the standing trait variance. Indeed, under (recurrent) direc-
tional selection, fitting higher order central moments such as
skewness and kurtosis was necessary for a good approxima-
tion of the temporal dynamics of the trait variance (Norberg
et al. 2001). However, a high immigration rate was still
needed to get a high average value of the trait variance, and
therefore the right timescale.

The predictions of our two models differed most strongly
for disruptive selection, both in terms of the overall magni-
tude of the aggregate properties and their temporal dynam-
ics. Disruptive selection consistently favored extreme trait
values compared to intermediate ones giving rise to persis-
tent bimodal trait distributions with large variances in the
FTD model. In the aggregate model, a co-occurrence of
biomass peaks at different trait values is impossible, making
this approach especially conducive to large errors in such
cases when higher-order moments are neglected. Accord-
ingly, the aggregate model either strongly over- or under-
estimated the prey or predator biomasses. This may have a
strong impact on the food web structure, the energy trans-
fer from one trophic level to the next, and related ecosystem
services, when implementing the aggregate model approach
into global ocean or other ecosystem models tailored to
specific systems. Trait variation was also incorporated into
fishery management models using an aggregate approach
(Akpalu 2009). However, our results lead us to the expec-
tation that, depending on the underlying trade-offs of the
system, a FTD model may deliver strongly deviating pre-
dictions concerning the sustainable yield of fish, with major
economic and ecological consequences.

Hence, it is important to establish robust model
approaches incorporating trait variation based on observable
data. This demands to understand precisely the limitations
of characterizing the functional trait diversity of whole com-
munities only in terms of aggregate measures. Accordingly,
recent model studies applied the aggregate model frame-
work to functional groups instead of entire communities
(Norberg et al. 2001; Terseleer et al. 2014), or combined the
approach of quantitative genetics with a multispecies model
approach (Norberg et al. 2012). However, it can be chal-
lenging in practice to define functional groups that are not
too numerous but sufficiently cohesive so that their fitness
landscapes are not subject to disruptive selection pressure.
Even at the population level, frequency-dependent selec-
tion can split a sexual population into separate phenotypic
clusters when mating is assortative (Doebeli 1996; Doe-
beli et al. 2007). Another option might be to dynamically
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model higher-order moments, such as the third and fourth
ones. However, model complexity increases very quickly,
the quality of the aggregate model approximation strongly
decreases with increasing moment order (Bruggeman and
Kooijman 2007; Savage et al. 2007), and even the direct fit-
ting of those higher-order moments was not able to keep
trait variances high (Norberg et al. 2001).

Our FTD model offers a promising alternative tool to
account for the inherent flexibility in natural populations
and communities. In line with Abrams (2006) and Maharjan
et al. (2013), we show that the shape of trade-offs strongly
influences the manifold interactions between all the differ-
ent phenotypes in our predator-prey system allowing for
stabilizing, directional or even disruptive selection. In the
last two cases, this frequently leads to bimodal trait distri-
butions with large variance implying that the maintenance
of diversity is related to the complex interactions between
the ubiquitous non-linearities in the growth and death rates
of populations and the diversity of their traits (see Eq. 24).
This fits with recent studies linking frequency-dependent
interactions to pattern formation in phenotypic space in the
form of multimodal trait distributions (Dieckmann et al.
2004; Allen et al. 2006; Doebeli et al. 2007; Pigolotti et al.
2010). However, in contrast to previous studies, we consider
in addition to direct resource competition (Scheffer and
van Nes 2006; Doebeli et al. 2007) also apparent competi-
tion. Hence, trophic interactions such as prey and predator
relationships may also give rise to lumpiness in pattern for-
mation as already pointed out in the prospective study of
Holling (1992). This agrees with findings from an NPZ
(nutrient-phytoplankton-zooplankton) model, showing per-
sistent multimodal size distributions within phytoplankton
and zooplankton communities when accounting for empir-
ical allometric relationships in their growth and loss rates
(Banas 2011). In our FTD model, the emergent trait dis-
tributions in the prey and predator communities are very
similar because both trophic levels are strongly linked. This
may explain the very similar size distributions in herbivores
and carnivores in natural systems (Holling 1992). Hence,
our FTD model predicts a testable relationship between
trade-off shapes and forms of functional trait distributions,
which may encourage future empirical studies to measure
the shape of trade-offs and relate it to observed trait distri-
butions. Although the shapes of the trade-offs are pivotal
in determining the dynamics and diversity of the modeled
ecosystems, empirical data on such relationships is scant
(but see Maharjan et al. 2013).

The formation of bimodal trait distributions in our FTD
model under directional and disruptive selection was stabi-
lized but not caused by immigration (“Appendix B: Model
version with mutation”; for an animation of the
temporal dynamics, see also Online Resource 2).
Indeed, a FTD model version without immigration

but with mutation, modeled as trait diffusion, main-
tained the main features of our original FTD model.
In contrast, the corresponding aggregate model devi-
ated both from its FTD analogue as well as from
the model version with immigration (“Appendix B:
Model version with mutation”). This shows that aggregate
approaches have also to be careful about the choice of
mechanism responsible for maintaining diversity (variance),
as the predictions are not robust to those choices.

In conclusion, community and ecosystem models need
to account for the possibility of strongly non-linear fitness
landscapes that may give rise to bimodal trait distributions
with large variances, rendering aggregate models inaccu-
rate. The common practice to consider only the fitness land-
scape close to the optimum trait has to be questioned and
carefully assessed in each case. Aggregate models approx-
imate trait dynamics well under specific conditions, such
as stabilizing selection, but fail to do so if largely different
trait values prevail simultaneously within the community or
functional group considered. Hence, with the FTD model
presented, we are better equipped to reveal the mechanisms
underlying the maintenance of functional diversity in traits.
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Appendix A: Derivation of the aggregate model

The FTD model describes the temporal changes in the
biomass density of each particular trait value and thus
yields, at every moment in time, the biomass densities of
the prey and predator communities (or functional groups)
as a function of their respective traits φ and ω. As a con-
sequence, the magnitude and shape of the biomass-trait
distributions may change in time. Instead of resolving the
rate of change of the biomass density for each particular
trait value, one may directly describe the temporal changes
in the aggregate properties of the prey and predator com-
munities using moment approximation methods. In this
case, the dynamics of the FTD model is approximated by
a corresponding aggregate model which tracks only the
temporal changes in the total biomasses of the prey and
predator communities and the locations (mean trait values)
and widths (trait variances) of the corresponding trait dis-
tributions. These aggregate quantities are related to the trait
distribution by integrals over the ecologically feasible trait
range, in accordance with Eq. 5. In this way, aggregate
models explicitly represent the trait-dependent growth and
loss terms that determine the dynamics of the aggregate
properties of the trait distribution (cf. Tirok et al. 2011).
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To derive the aggregate model (6–8) from the FTD model
(1–3), one has to write down the rate of change of the aggre-
gate properties using Eqs. 1–3 and expand all functions in
Taylor series around the mean trait value, since the aver-
age over the distribution of the per-capita net growth rates
determines the overall trait and biomass dynamics. This
leads to expressions written in terms of (central) moments
of the trait distributions. Afterwards, a moment approxima-
tion is performed by truncating these series up to the second
order. This will be a good approximation when the growth
and grazing functions have only weak non-linearities and
thus all higher-order derivatives quickly vanish, or when the
trait distribution is very narrow, that is, has a small vari-
ance. Hence, the error in the biomass and trait dynamics
will be most pronounced if both the higher-order derivatives
of the fitness landscape, i.e., the per-capita net-growth rate
as a function of the trait, evaluated at the mean trait value
and the higher-order moments of the trait distribution obtain
large absolute values at the same time. For example, if trait
distributions with a sufficiently large variance exhibit large
values of skewness or kurtosis, the quality of the approxi-
mation made by the corresponding aggregate model will be
rather poor when the fitness landscape is highly non-linear.
This holds since the performance of species with trait val-
ues away from the community average φ̄ will likely differ
from the performance of a species with a trait value equal to
φ̄ (cf. Ruel and Ayres 1999; Tirok et al. 2011).

For sake of brevity, we will derive the prey equations in
detail below, as the derivation of the equations for the preda-
tor are completely analogous. The Taylor expansion of a
function f around the prey’s mean trait value φ̄ is given by:

f (φ) =
∞
∑

n=0

(φ − φ̄)n

n!
dnf (φ̄)

dφn
. (13)

Since we are dealing with aggregate quantities such
as prey biomass summed over the whole trait range, we
will need the expansion of integrals over the prey’s trait
distribution A(φ), such as:

where Mn is the nth central moment of the distribution A(φ)

(in particular, M2 = νφ), defined by

Mn = 1

AT

∫

(φ − φ̄)nA(φ)dφ . (14)

The rate of change of the total prey biomass AT is

dAT

dt
= d

dt

∫

A(φ)dφ =
∫

dA(φ)

dt
dφ

=
∫

[

A(φ)R̃(φ) + IA

]

dφ, (15)

where R̃ is the per capita net growth rate from Eq. 1:

R̃(φ) = r(φ) + B(φ) − 1

A(φ)

∫

g(φ, ω)C(ω)dω. (16)

Now, the grazing term already contains an integral over φ′,
independent of φ, so we expand it first:

1

A(φ)

∫

g(φ, ω)C(ω)dω

= gm q(φ, ω)

M(ω) + ∫

q(φ′, ω)A(φ′)dφ′

= gm q(φ, ω)

M(ω) + AT

[

q(φ̄, ω) + νφ

2
∂2q(φ,ω)

∂φ2

∣

∣

∣

φ=φ̄
+ . . .

] , (17)

and here we drop terms of order higher than two (denoted by
the dots), which gives us simply G(φ, ω) defined by Eq. 8.
We now proceed expanding the integral in terms of ω:

R̃(φ) = r(φ) + B(φ) −
∫

G(φ, ω)C(ω)dω

= r(φ) + B(φ)

+CT

[

G(φ, ω̄) + νω

2

∂2G(φ, ω)

∂ω2

∣

∣

∣

∣

ω=ω̄

+ . . .

]

,

(18)

and, stopping once again at the second order, we arrive at the
expression for RA(φ) (7). Substituting it back into Eq. 15
and expanding:

dAT

dt
=

∫

[A(φ)RA(φ) + IA] dφ

= AT

(

RA(φ̄) + νφ

2

∂2RA

∂φ2

∣

∣

∣

∣

φ=φ̄

+ · · ·
)

+ IA, (19)

which yields Eq. 6 when we truncate at the second order.
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The rate of change of the mean trait value is derived in a
similar fashion:

dφ̄

dt
= 1

AT

[

d

dt

∫

φA(φ)dφ − 1

AT

dAT

dt

∫

φA(φ)dφ

]

= 1

AT

[∫

φ
dA(φ)

dt
dφ − φ̄

dAT

dt

]

= 1

AT

∫

(φ − φ̄)
dA(φ)

dt
dφ

= 1

AT

∫

(φ − φ̄) (A(φ)RA(φ) + IA) dφ

= 1

AT

∫

(φ − φ̄)A(φ)RA(φ)dφ

+ 1

AT

∫

(φ − φ̄)IAdφ

=
(

νφ

∂RA

∂φ

∣

∣

∣

∣

φ=φ̄

+ M3

2

∂2RA

∂φ2

∣

∣

∣

∣

φ=φ̄

+ . . .

)

+ IA

AT

(

1

2
− φ̄

)

. (20)

Finally, the trait variance will be expressed by:

dνφ

dt
= 1

AT

[

d

dt

∫

(φ − φ̄)2A(φ)dφ

− 1

AT

dAT

dt

∫

(φ − φ̄)2A(φ)dφ

]

= 1

AT

[∫

(φ − φ̄)2 dA(φ)

dt
dφ − νφ

dAT

dt

]

. (21)

The second term can be expanded directly using Eq. 19

νφ

AT

dAT

dt
= νφ

[(

RA(φ̄) + νφ

2

∂2RA

∂φ2

∣

∣

∣

∣

φ=φ̄

+· · ·
)

+ IA

AT

]

,

(22)

while the first term can be written as:

1

AT

∫

(φ − φ̄)2 (A(φ)RA(φ) + IA) dφ = νφRA(φ̄)

+ M3
∂RA

∂φ

∣

∣

∣

∣

φ=φ̄

+ M4

2

∂2RA

∂φ2

∣

∣

∣

∣

φ=φ̄

+ IA

AT

(

1

3
+ φ̄2 − φ̄

)

. (23)

Given the fact that the terms proportional to νφ in Eq. 23
cancel with the ones from Eq. 22 and that the terms pro-
portional to ν2

φ combine with those from Eq. 22, the rate of
change of the trait variance can be approximated by:

dνφ

dt
= M3

∂RA

∂φ

∣

∣

∣

∣

φ=φ̄

+
(

M4 − νφ
2
)

2

∂2RA

∂φ2

∣

∣

∣

∣

φ=φ̄

+ IA

AT

[

1

12
− νφ +

(

1

2
− φ̄

)2
]

. (24)

As seen in Eqs. 20 and 24, temporal changes in the aggre-
gate properties (lower-order moments) generally depend
on higher-order moments. To derive self-contained expres-
sions for the evolution of the aggregate properties, and
thus to close the system of differential equations, one has
to describe the higher-order moments in the correspond-
ing equations by lower-order moments. Different moment
closure techniques were described in detail by Norberg
et al. (2001) and Merico et al. (2009). For instance, Nor-
berg et al. (2001) described the third and fourth central
moments by power-functions of the first (mean trait) and
second (variance) central moments and the optimal trait
value. The parameters were estimated from the trait dis-
tributions obtained from simulations of the underlying
multispecies model. Another approach is to assume the
trait distributions to be well represented by a Gaussian
(Wirtz and Eckhardt 1996; Merico et al. 2009; Tirok et al.
2011) for which the higher-order moments are either zero
(odd moments) or fully determined by the variance alone
(even moments).

Following Wirtz and Eckhardt (1996) and Merico et al.
(2009), we assume traits to be normally distributed. Using
the fact that the third central moment of a Gaussian dis-
tribution equals zero (M3 = 0; the normal distribution is
symmetric), and that its fourth central moment is propor-
tional to the square of its variance (M4 = 3M2

2 ), that is, its
excess kurtosis is 0, we can approximate the rate of change
of the mean trait value Eq. 20 and of the trait variance Eq. 24
by Eq. 6.

Appendix B: Model version with mutation

The immigration term in Eqs. 1 and 6 prevents the extinc-
tion of species by providing a very small constant influx
of immigrants of all trait values. This is generally realistic
and necessary to ensure that some variance is retained in
the aggregate model, but may in principle strongly influence
the dynamics of both types of models. Here, we build ver-
sions of the FTD model and the aggregate model without
immigration, but with mutation instead. Mutation can be an
important process when dealing with narrowly defined func-
tional groups, where the trait variance may originate mostly
from intra-populational processes rather than standing trait
variance among different species.

Here, mutation is understood as a small probability of
offspring to have trait values slightly different then their par-
ents (we do not account for sexual mixing). It is modeled as
a (Fokker-Planck) diffusive term, corresponding to the sec-
ond derivative of the population density times the birth rate
with respect to the trait value. In the case of prey, we assign
all density-dependent terms to the mortality, and thus their
birth rate, ρA, is simply the intrinsic growth rate (r ′). The
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birth rate ρC of predators is their grazing rate. This leads to
the modified FTD model:

∂A(φ, t)

∂t
= (r(φ) + B(φ)) A −

∫

g(φ, ω)Cdω

+μA

∂2 [ρAA(φ)]

∂φ2

∂C(ω, t)

∂t
=

(

e

∫

g(φ, ω)dφ − d + B(ω)

)

C

+μC

∂2 [ρCC(ω)]

∂ω2

ρA(φ) = r ′(φ) ρC(ω) = e

∫

g(φ, ω)dφ, (25)

where μA and μC are the mutation rates for prey and preda-
tor, respectively, and all other terms and parameters are as
before. We derive the aggregate model from the FTD model
from this equation together with Eq. 5. Due to the boundary
functions imposed, the population densities go to zero very
quickly outside the range of traits from 0 to 1. Therefore, we
assume that A(φ), as well as its derivatives, go fast enough
to 0 as φ goes to (plus or minus) infinity, which guarantees
that terms calculated at infinity appearing via integration by
parts vanish.

Thederivationproceedsexactlyas in“Appendix A:Derivation
of the aggregate model”. We begin by calculating the rate of
change of total biomass, dAT

dt
. The new term corresponding

to mutation in Eq. 15 will be:

μA

∫

∂2 [ρAA(φ)]

∂φ2
dφ = μA

∂ [ρAA(φ)]

∂φ

∣

∣

∣

∣

∞

−∞
= 0, (26)

which means that mutation does not contribute any extra
term to the total biomass equation. Proceeding to the mean

trait equation, dφ̄
dt

, we now get the following contribution of
the mutation term:

μA

AT

∫

φ
∂2 [ρAA(φ)]

∂φ2
dφ = μA

AT

[

φ
∂ [ρAA(φ)]

∂φ

]∣

∣

∣

∣

∞

−∞

−μA

AT

∫

∂ [ρAA(φ)]

∂φ
dφ

= 0 − μA

AT

[ρAA(φ)]

∣

∣

∣

∣

∞

−∞
= 0, (27)

and hence mutation does not affect the mean trait value
either. Finally, the equation for the rate of change of

the trait variance, dνφ

dt
, has a term due to mutation given

by:

μA

AT

∫

φ2 ∂2 [ρAA(φ)]

∂φ2
dφ = μA

AT

[

φ2 ∂ [ρAA(φ)]

∂φ

]∣

∣

∣

∣

∞

−∞

−2
μA

AT

∫

φ
∂ [ρAA(φ)]

∂φ
dφ

= 0 − 2
μA

AT

{

[φρAA(φ)]

∣

∣

∣

∣

∞

−∞
− μA

AT

∫

ρAA(φ)dφ

}

= 2
μA

AT

∫

ρAA(φ)dφ

= 2μA

[

ρA(φ̄) + νφ

2

∂2ρA(φ)

∂φ2

∣

∣

∣

∣

φ=φ̄

+. . .

]

. (28)

Thus the equation for trait variance becomes:

dνφ

dt
= ν2

φ

∂2RA

∂φ2

∣

∣

∣

∣

φ=φ̄

+2μAρA(φ̄)+νφμA

∂2ρA(φ)

∂φ2

∣

∣

∣

∣

φ=φ̄

.

(29)

We analyzed the resulting dynamics of the FTD model
and the aggregate model as described in the methods of the
main text. For all selection regimes, Fig. 8 shows very sim-
ilar patterns for the FTD model with mutation compared to
the FTD model with immigration (cf. Fig. 3). In contrast, the
aggregate model no longer displayed large oscillations in its
mean trait values for intermediate values of β, but high trait
variances instead, indicating that even the type of dynam-
ics it generates is not robust to such structural modification.
Importantly, immigration influenced the mean trait values
directly, pulling toward intermediate values and facilitating
recurrent changes in trait values. Even for stabilizing selec-
tion, the agreement between the two types of models in the
temporal averages of the total biomasses and mean trait val-
ues is worse than in the scenario with immigration, since
variance levels of the FTD model are higher in the mutation
variant (4 × 10−3 compared to 2 × 10−5, when β = 0.2),
leading to worse performance of the aggregate model due to
Jensen’s inequality.

In the absence of immigration, the FTD model no longer
exhibited bistability. Also, the transition between states of
very different dominant trait values occurred more slowly,
leading to longer cycles. Nonetheless, it still presented
bimodal trait distributions for a wide range of parameters.
For instance, P was above 1.2 (see “Numerical simulations
and data analysis” section) during 12 and 68 % of the time
for prey and predators, respectively, with β = 3, and dur-
ing 5 and 45 % for β = 5. This confirms that bimodal trait
distributions were stabilized but not caused by immigration,
which is in accordance with findings from Pigolotti et al.
(2010).
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Fig. 8 Temporal averages
(lines) and variation (± 1
standard deviation; shades) of
biomass, mean trait, and
standing trait variance of the
solutions of the FTD (red) and
aggregate (green) models with
mutation instead of immigration
(25, 29), as the shape of the
trade-offs (β) is varied.
Mutation rates were set to
μA = 10−4 and
μC = 2 × 10−5, with all other
parameters as in Table 1. The
dotted lines correspond to
alternative long-term solutions,
obtained by exploring different
initial conditions, leading to
distinct basins of attraction
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