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A B S T R A C T

Ecological communities are complex adaptive systems that exhibit remarkable feedbacks between their biomass
and trait dynamics. Trait-based aggregate models cope with this complexity by focusing on the temporal de-
velopment of the community’s aggregate properties such as its total biomass, mean trait and trait variance. They
are based on particular assumptions about the shape of the underlying trait distribution, which is commonly
assumed to be normal. However, ecologically important traits are usually restricted to a finite range, and em-
pirical trait distributions are often skewed or multimodal. As a result, normal distribution-based aggregate
models may fail to adequately represent the biomass and trait dynamics of natural communities. We resolve this
mismatch by developing a new moment closure approach assuming the trait values to be beta-distributed. We
show that the beta distribution captures important shape properties of both observed and simulated trait dis-
tributions, which cannot be captured by a Gaussian. We further demonstrate that a beta distribution-based
moment closure can strongly enhance the reliability of trait-based aggregate models. We compare the biomass,
mean trait and variance dynamics of a full trait distribution (FD) model to the ones of beta (BA) and normal (NA)
distribution-based aggregate models, under different selection regimes. This way, we demonstrate under which
general conditions (stabilizing, fluctuating or disruptive selection) different aggregate models are reliable tools.
All three models predicted very similar biomass and trait dynamics under stabilizing selection yielding unimodal
trait distributions with small standing trait variation. We also obtained an almost perfect match between the
results of the FD and BA models under fluctuating selection, promoting skewed trait distributions and ongoing
oscillations in the biomass and trait dynamics. In contrast, the NA model showed unrealistic trait dynamics and
exhibited different alternative stable states, and thus a high sensitivity to initial conditions under fluctuating
selection. Under disruptive selection, both aggregate models failed to reproduce the results of the FD model with
the mean trait values remaining within their ecologically feasible ranges in the BA model but not in the NA
model. Overall, a beta distribution-based moment closure strongly improved the realism of trait-based aggregate
models.

1. Introduction

Ecological communities can respond to altered environmental con-
ditions by adapting their trait composition, which may in turn alter the
strength of ecological interactions and thus the selection pressure of the
environment. A recently advocated approach to unravel such feedbacks
between biomass and trait dynamics is to consider communities as
complex adaptive systems (Norberg, 2004; Merico et al., 2009).
Building on fundamental theory in evolutionary biology (Lande, 1982;
Turelli and Barton, 1994; Day and Proulx, 2004) and spatial ecology
(Iwasa et al., 1987; Dieckmann and Law, 1996; Bolker and Pacala,

1997), community ecologists developed trait-based aggregate models in
order to focus on key functional attributes of the communities (Wirtz
and Eckhardt, 1996; Norberg et al., 2001). Unlike discrete or full trait
distribution models that consider the population dynamics of several or
all functionally different species separately (Bruggeman and Kooijman,
2007; Tirok and Gaedke, 2010; Acevedo-Trejos et al., 2016), aggregate
models describe the temporal dynamics of the community’s aggregate
properties such as its total biomass, mean trait and trait variance (Tirok
et al., 2011; Merico et al., 2014). The mean and variance correspond to
the first and second central moments of the corresponding trait dis-
tribution, and therefore represent the average strategy and functional
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diversity of a community. The corresponding reduction in model
complexity may enhance the computational efficiency and allow the
achievement of analytical results, which may increase the mechanistic
understanding of biomass-trait feedbacks in natural systems.

The derivation of an aggregate model from a full trait distribution
model involves a moment expansion, which determines how the rates of
change of the aggregate properties depend on the shape of the trait
distribution (Norberg et al., 2001; Coutinho et al., 2016). In general, the
temporal development of lower moments such as the mean and var-
iance depend on higher moments such as the skewness and kurtosis,
which quantify how skewed and peaked a distribution is. In order to get
self-contained expressions of the aggregate model equations, one has to
conduct a moment closure where higher moments are expressed in
terms of lower ones (Kuehn, 2015). This is commonly done by assuming
a particular shape of the underlying distribution.

In community ecology, previous studies often used a normal dis-
tribution-based moment closure approach and thus assumed the shape
of the trait distribution to be a Gaussian (Terseleer et al., 2014;
Acevedo-Trejos et al., 2015; Smith et al., 2016). This assumption im-
plies that trait distributions should be unimodal and symmetric, and
that traits are defined on an infinite range, without a lower or upper
boundary. The assumption of a unimodal trait distribution seems to be
valid under stabilizing selection, in which intermediate trait values are
favored over extreme ones. However, recent empirical studies showed
that trait distributions are often heavily skewed or multimodal
(Havlicek and Carpenter, 2001; Thibault et al., 2011; Downing et al.,
2014; Gaedke and Klauschies, 2017). This is likely a result of fluctu-
ating or disruptive selection and questions the strong assumption of
normally distributed trait values (Coutinho et al., 2016). Under fluc-
tuating selection, trait distributions are expected to show skewness
because different trait values are favored at different times, whereas
under disruptive selection extreme trait values are favored over inter-
mediate ones, promoting bimodal trait distributions. In addition, im-
portant traits such as body size, reproduction rate or edibility are
clearly restricted to a finite range. For example, a prey species cannot
be more than entirely edible or inedible, constraining the trait edibility
to the range between zero and one (Klauschies et al., 2016). In general,
this limited range of trait values will lead to specific correlations be-
tween lower and higher moments (Gaedke and Klauschies, 2017): a
distribution whose mean x( ) is close to the lower or upper limit will
most probably be right- >S( 0) or left-skewed <S( 0), promoting a
negative correlation between S and x . Furthermore, when the trait
range is limited, distributions with high variances ν( ) have to be rather
flat, or even bimodal, leading to low values of kurtosis K( ). Conversely,
peaked distributions with pronounced tails resulting in high values of K
must exhibit low values of v. This results in a negative correlation be-
tween K and v. In contrast, a normal distribution presents no such
correlations because both S and K are constant, and thus independent
of x and v. Hence, a Gaussian does not capture such properties of nat-
ural trait distributions.

Inspired by recent developments in stochastic population biology
(Krishnarajah et al., 2005; Clancy and Mendy, 2011), we explore in this
study a novel moment closure approach for trait-based aggregate
models, by assuming that the shape of the trait distribution follows a
beta distribution. In contrast to a normal distribution, the beta dis-
tribution is defined only over a finite range with lower and upper limits,
and can be unimodal or bimodal, symmetric or skewed, depending on
its mean and variance. Moreover, the correlations between its higher
and lower moments conform to the pattern described above. We cor-
roborate these qualitative relations by comparing the relationships
between lower and higher moments of the beta distribution with those
observed for phytoplankton size distributions of the Baltic Sea (Klais
et al., 2016a, b) and for simulated trait distributions of a full trait
distribution (FD) model. The FD model comprises the full trait dis-
tribution of a prey community that competes for a common carrying
capacity and that is grazed upon by three different predator species that

are specialized on different parts of the prey’s trait spectrum. Hence, the
FD model entails key features of natural food webs and generates dif-
ferent selection regimes, which determine the shape of the prey com-
munity’s trait distribution (see Fig. 1). Finally, we show how a beta
distribution-based moment closure approach improves trait-based ag-
gregate models by comparing the biomass and trait dynamics of the FD
model to a beta distribution-based aggregate (BA) model and a normal
distribution-based aggregate (NA) model under different selection re-
gimes.

2. Materials and methods

To evaluate if the beta distribution represents a more suitable basis
for a moment closure of trait-based aggregate models than the normal
distribution, we compare the relationships between lower and higher
central moments of observed phytoplankton size distributions, simu-
lated trait distributions of a full trait distribution (FD) model, and the
beta distribution. Subsequently, we compare the dynamics of biomass,
and mean and variance of the trait distribution under the FD model to
that of aggregate models based on a beta or normal distribution mo-
ment closure.

2.1. Analyzing the shape of observed phytoplankton size distributions

We analyzed the correlations among lower and higher central mo-
ments of more than 7000 phytoplankton size distributions of the Baltic
Sea (Klais et al., 2016a, b). Size, i.e. cell volume, is the most important
trait, influencing many eco-physiological processes of phytoplankton
species such as nutrient uptake, maximum growth rates, sedimentation
rates, and susceptibility to zooplankton grazing (Weithoff, 2003). The
classification of the different phytoplankton species was done according
to their individual cell volume or colony size (for details see Klais et al.,
2016a, b). Missing values of the size of a phytoplankton species at
particular sampling dates or locations were replaced by the average
value for that species over all sampling times and locations. We log-
transformed the size values of the phytoplankton species to account for
their large range (covering about eleven orders of magnitude) and for
the inherent skewness in size distributions. This is in line with the
general assumption of normal distribution-based aggregate models that
size is log-normally distributed (Terseleer et al., 2014; Acevedo-Trejos
et al., 2015). To reduce the sampling error, we grouped the biovolume
of the species into 85 equidistant size classes on a log2 scale. To account
for individual growth and variability within each species, we assumed
that the minimum and maximum size values of each species differed by
a factor of 4 prior to log2-transformation (Gaedke, 1992). Assuming
that the species-specific size distribution is log-normal (see Lande,
1982), we allocated 50% of the biovolume to the class corresponding to
the species’ measured mean size value, x , 20% to the two adjacent
classes corresponding to the ranges within 21/2 and 2−1/2 of x and 5%
to the classes corresponding to the ranges 2 and 2-1 away from x . All
subsequent calculations are based on the mean values of the classes,
ordered on a log2 scale.

2.2. Full trait distribution model (FD model)

In order to achieve different selection regimes, we consider a pre-
dator-prey model with a set of prey species with continuous trait values,
grazed upon by three predators, each feeding on a specific part of the
prey’s trait range. The rate of change of the different prey R( ) and
predator C( ) species are given by the following set of equations:
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The prey are structured by their trait value x , bounded between 0 and
1. The parameters r and κ are respectively the intrinsic growth rate and
carrying capacity of the prey. Hence, the prey species are competing for a
shared resource such as light. The net growth rates of the three predators,
which are identified by ∈i {1, 2, 3}, depend on their common handling
time h( ), efficiency ε( ) and death rate d( ), and their species-specific attack

rates a( )i . The parameter values used in the simulations are given in
Table 1. All parameters are independent of x except for ai. These are
functions of the prey phenotype x (Fig. 1A–C):
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with amax and amin being the maximum and minimum attack rates of the
different predators. The attack rates of the three different predators are
maximal at their species-specific optimal prey phenotypes with trait values
of 0, 0.5 or 1. The parameter σ determines the width of the predators’

Fig. 1. (A–C) Predator-specific attack rates in dependence of the prey’s trait value x. (D–F) Sketch of resulting fitness landscapes of the prey community imposing
stabilizing, fluctuating or disruptive selection. (G–I) Expected shape of the beta distribution (dark green) and the normal distribution (light green) in response to
selection. The presence or absence of the different predators determines the overall selection regime and the shape of the trait distribution of the prey community.
The presence of only two predators specialized on the prey’s extreme trait values (A) imposes stabilizing selection on the prey community (D) and thus promotes
unimodal trait distributions of the prey community (x =0.5; v=0.05) (G). With all three predators present (B), fluctuating selection is imposed, in which different
trait values are favored at different times depending on the relative importance of the three predators (E), promoting temporally left (dashed) or right (solid) skewed
trait distributions (x =0.2; v=0.025) (H). The presence of a single predator specialized on the intermediate mean trait values (C) provokes disruptive selection (F)
and thus bimodal trait distributions (x =0.5; v=0.09) (I). Note that in contrast to the beta distribution, the shape of the normal distribution does not reflect the
expected shape properties of the trait distribution under fluctuating or disruptive selection regimes.
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feeding kernel. In addition, we added a small immigration rate I( ) to Eq.
(1) to prevent extinction of any particular trait value in the FD model and
to promote short transients in its dynamics.

We compared the results of the FD model with those of the two dif-
ferent aggregate models by calculating the first three aggregate properties
of the prey community’s trait distribution, i.e. its total biomass R( )T , trait
mean x( ) and trait variance ν( ), which are given for the FD model by:
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The FD model was numerically integrated using the method of lines,
where a system of coupled ordinary differential equations is obtained
through a discretization along the trait axis. Hence, we approximated
the FD model by the following set of equations:
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with =n 101 being the number of different prey species. Their corre-
sponding trait values are distributed evenly along the trait axis of the
entire prey community, i.e. ∈ …x {0, 0.01, 0.02, , 1}j . Accordingly, the
aggregate properties were estimated from the biomass values obtained
for the different prey species:
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2.3. Aggregate models (AM)

Instead of describing the temporal development of the biomasses of dif-
ferent species with particular trait values separately, one can focus on a

system of differential equations that describe the rate of change of the ag-
gregate properties directly, using moment approximation methods. We de-
rived the trait-based aggregate models from the corresponding FD model as
shown in Appendix A. Consequently, the temporal development of the ag-
gregate properties is described by the following set of approximate equations:
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with F being the per capita net growth rate (fitness), and S and K being
the skewness and the kurtosis of the trait distribution of the prey com-
munity. When conducting a moment closure based on the assumption of
normally-distributed trait values, Eqs. (13) and (14) simplify to
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because S equals zero and K equals 3. Hence, S and K are independent of
the mean x and variance ν. In contrast, S and K of the beta distribution
strongly vary with both x and ν (for details see Appendix A; cf. Fig. 1G–I):
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In line with Coutinho et al. (2016) and Eq. (1), the second-order
approximation of F is given by:
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In accordance with the FD model, the small immigration rate I in
the aggregate model equations prevents a complete loss of the standing
trait variation in the prey community.

2.4. Numerical simulations and selection regimes

We conducted numerical simulations of our models to compare their
biomass and trait dynamics under different selection regimes. The type
of selection pressure on the prey community was altered by choosing
which of the three predators were present (see Fig. 1). With only the
two predators specialized on the two extreme trait values present, the
overall selection pressure was stabilizing towards the intermediate trait
value of the prey. In contrast, with only one predator specialized on the
intermediate trait values present, the prey community exhibits dis-
ruptive selection. Finally, if all three predators are present, selection is
on average rather neutral, potentially leading to fluctuating and thus
recurrent directional selection, in which different trait values are fa-
vored at different times. We initialized all simulations with equally
abundant predators, =Ci N

1 κ
10 with N being the number of predators,

and total biomass and trait variance of the prey community of κ
2
and

Table 1
Description of parameters used in the model for the figures. The parameters are
estimated by considering the biomasses of phytoplankton (prey) and zooplankton
(predators) in units of carbon in the upper most 20m of the water column of Lake
Constance corresponding approximately to the euphotic zone and the epilimnion
(Tirok and Gaedke, 2007). Hence, the units g/m2 of biomasses refer to the biomass
in the water column of the top levels (m·g/m3=g/m2).

Parameter Description Value Unit

r intrinsic growth rate of the prey 2 1/day
κ carrying capacity of the prey 10 g C/m2

amax maximum attack rate of the predators 2 g C/(m2 day)
amin minimum attack rate of the predators 0.25 g C/(m2 day)
h handling time of the predators 0.5 day
σ standard deviation of the feeding kernel 0.3 –
ε conversion efficiency of the predators 0.3 –
d death rate of the predators 0.2 1/day
I immigration rate 0.0001 g C/(m2 day)
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10−3, respectively. To investigate the possibility of multi-stability in
our models we ran them for different initial values of the mean trait, i.e.

∈ …x {0.05, 0.07, , 0.93, 0.95}. We assumed the initial trait distribution
of the prey community in the FD model to follow the shape of a beta
distribution, though that was not relevant for the long-term solutions
obtained. All simulations lasted for 104 time units.

Simulations and analyses were performed in MATLAB, version 7.13,
using solver ode23 for ODEs (The MathWorks Inc., Natick, MA, 2011).
We increased the precision of the solver by reducing the absolute and
relative tolerances to 10−9 and 10-7 and the maximum step size to 0.1.

3. Results

3.1. Analyzing the shape of the empirical and simulated trait distributions

The observed phytoplankton size distributions and the simulated
trait distributions both revealed strong relationships between lower and
higher moments. The skewness S( ) and the mean x( ) were strongly
negatively correlated (Fig. 2A (r2 = 0.41) and 2C) because the trait
distribution tends to become skewed as x approaches one of the ex-
treme trait values, for a given value of ν. We also found a strong ne-
gative correlation between the log of kurtosis ln K( ( )) and the log of the
variance ln ν( ( )) (Fig. 2B (r2= 0.42) and 2D). In fact, a trait distribution
defined on a finite trait range can only exhibit very high variances when
its shape is close to the one of a flat or even bimodal distribution,
corresponding to small values of K . In contrast, peaked trait distribu-
tions with pronounced tails, i.e. distributions with high values of K , will
usually have rather low values of ν. These relationships between lower
and higher central moments are qualitatively well approximated by a
beta distribution (Eqs. (13) and (14); Fig. 2E and F).

3.2. Comparing the biomass and trait dynamics of the FD, BA and NA models

Our model comparison revealed further support for the suitability of a
beta distribution-based moment closure. The presence or absence of dis-
tinct predator species imposed either stabilizing, fluctuating or disruptive
selection on the prey community (Fig. 1). Under stabilizing selection, the
predator biomasses and the three aggregate properties of the prey com-
munity, i.e. its total biomass, mean trait value and variance, showed stasis
in the full trait distribution (FD) model at the end of the simulation
(Fig. 3A, D and G). The lack of oscillations is explained by the comparably
low attack rates of the predators at equilibrium conditions. In line with
that, the two aggregate models predicted very similar values of the pre-
dator biomasses and the aggregate properties of the prey community
(Fig. 3) because the symmetric unimodal trait distribution of the FD model
exhibited a very small variance ≈ −ν( 2·10 )6 that could be captured well
by both the beta (BA) and the normal (NA) distribution-based approaches.
This result was independent of the initial conditions. The biomass and trait
dynamics of the FD, BA and NA models also agreed very well when the
system exhibited predator-prey oscillations, e.g. for =K 20 rather than

=K 10. This is in line with additional results from a chemostat model, in
which a trade-off between the prey’s nutrient uptake efficiency and its
vulnerability to predation imposes stabilizing selection on the trait dis-
tribution of the prey community (for details see Appendix B). As expected,
the numerical integration of both aggregate models was up to 4 times faster
than that of the FD model (Table 2). Interestingly, there was no difference
between the simulation times of the BA model and the NA model.

We also observed an almost perfect match between the cyclic bio-
mass and trait dynamics of the FD and BA models under fluctuating
selection, favoring different trait values of the prey community and
different predators at different times (Fig. 4). The pronounced predator-
prey oscillations were caused by the temporarily high attack rates of the
predators. This result was independent of the initial conditions (Fig. 5)
and robust to changes in the carrying capacity, minimum attack rate
and immigration rate (Appendix C). The BA model could not reproduce
the biomass and trait dynamics of the FD model when the immigration

rate was very low (Fig. C3). In contrast to the BA model, the results of
the NA model deviated considerably from the ones of the FD model
(Fig. 4C, F, I). Additionally, it exhibited several alternative states and
thus a high sensitivity to initial conditions. Depending on the initial
mean trait value of the prey community, different equilibria for the
biomass and trait dynamics were obtained (Fig. 5C, F and I) when either
one or two predators went extinct (Fig. 4C). Extinctions of two pre-
dators occurred when the equilibrium value of x was outside the eco-
logically feasible range, which occurred frequently. Depending on the
strength of the predator-prey interactions at equilibrium conditions, the
predator-prey dynamics showed either stasis or oscillations. These re-
sults were insensitive to deviations from the exact parameter values
(Appendix C). In the BA model, x always remained within its ecologi-
cally feasible range. This result was to be expected because the beta
distribution is naturally defined on the finite range between 0 and 1. A
more detailed analysis revealed that the boundedness of x is realized by
a dynamical feedback between x and S. In fact, the absolute value of S
strongly increased when x approached one of the extremes, leading to a
strong decline of ν. As a result, the rate of change of x strongly slowed
down preventing any further change of x close to the extremes (for
details see Appendix D). This mechanism of self-regulation is lacking in
the NA model. In line with stabilizing selection, the numerical in-
tegration of both aggregate models was about three times faster than
that of the FD model under fluctuating selection, whereas the simula-
tion times of the BA model and the NA model were similar (Table 2).
The general features of our results, that is, the match between the FD
and BA models but not with the NA model, as well as the gains in
computation times, do not depend on details of the model structure
(Appendix B). We demonstrate this with a species competition model,
in which the recurrent changes in an environmental factor impose
fluctuating selection on the trait distribution of the community.

Under disruptive selection, both aggregate models failed to match
the results of the FD model, which predicted a symmetric bimodal trait
distribution exhibiting maximum variance (Fig. 6). The NA model even
failed to reproduce the predator and prey biomasses. The disagreement
between the results of the FD and NA models was to be expected, be-
cause a normal distribution cannot represent a bimodal trait distribu-
tion that is dominated by two very different strategies (cf. Fig. 1). In
contrast, the reason for the mismatch between the results of the BA and
FD models is more intriguing, since the beta distribution is in principle
able to capture the shape of bimodal trait distributions (see Fig. 1).
Given the symmetry of the feeding interactions in our model, the BA
model predicted only the biomasses of the prey and predator commu-
nities correctly but not x and ν of the prey community’s trait dis-
tribution. This mismatch is only explicable by the restrictions imposed
by the second-order approximation of the shape of the fitness land-
scape, i.e. it is independent of the type of moment closure. In fact, an
extended version of the BA model that accounted for higher derivatives
of the fitness function was able to reproduce the mean and variance but
not the biomass dynamics of the prey community of the FDmodel under
disruptive selection (for details see Appendix E). Furthermore, and in
contrast to the FD model, both aggregate models showed bistability,
where the prey community was dominated by a species possessing ei-
ther a high or low x . As expected, the latter was still within the eco-
logically feasible range in the BA model (Fig. 7E) but not in the NA
model making it fundamentally inconsistent (Fig. 7F). Hence, the in-
ability of the aggregate models to represent bimodal trait distributions
with large variances was compensated by the emergence of two alter-
native stable states. In case of the BA model, the average distribution of
these alternative stable states captured the bimodal distribution of the
FDmodel well. The numerical integration of both aggregate models was
about three times faster than that of the FD model (Table 2). The
mismatch between the results of the FD and aggregate models under
disruptive selection was independent of the exact model structure
(Appendix B). We show this with a modified version of the predator-
prey model used in the main text, in which a trade-off between the
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Fig. 2. Skewness S( ), i.e. the standardized third central moment, and Kurtosis K( ), i.e. the standardized fourth central moment, in dependence of the mean x( ) and
variance ν( ) for the observed phytoplankton size distributions (A, B), the simulated trait distributions of the full trait distribution model (C, D) and the beta
distribution (E, F). The red dotted-dashed lines indicate the constant values of Sand K for the normal distribution. We fitted linear regressions (blue lines) to the
empirical data in panels A and B. We enhanced the visibility of the relationships between lower and higher central moments found in the observed phytoplankton size
distributions by showing only 95% of the data points in panel A and 96.5% of the data points in panel B. The relationships between the lower and higher central
moments of the simulated trait distributions shown in panels C and D are the result of the corresponding simulation of the full trait distribution model shown in
Fig. 4A–C. The relationships between the lower and higher central moments of the beta distribution shown in panels E and F follow from Eqs. (18) and (19) of the
methods section. We calculated the values of S and K for the beta distribution based on x and v values that resulted in the corresponding simulation of the full trait
distribution model shown in Fig. 4A–C. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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prey’s vulnerability to predation by the two specialist predators imposes
disruptive selection on the trait distribution of the prey community.

4. Discussion

Trait-based aggregate models are a promising tool to incorporate
the effects of functional diversity of natural communities into an

efficient mathematical framework. The corresponding equations di-
rectly inform about the properties of the fitness landscape and trait
distribution that drive the temporal development of the aggregate
properties and, thus, may enable a detailed understanding of the bio-
mass-trait feedback of complex adaptive systems (CAS) under simpli-
fying assumptions. Their derivation from a corresponding full trait
distribution model demonstrates that the temporal development of the
lower moments generally depends on higher moments (for details see
Appendix A). Obtaining a closed system of differential equations re-
quires a moment closure so that the higher moments are expressed in
terms of the lower ones (Norberg et al., 2001; Coutinho et al., 2016). A
frequently made assumption is that the higher moments such as
skewness (S) and kurtosis (K) of the trait distribution follow a normal
distribution (Wirtz and Eckhardt, 1996; Tirok et al., 2011; Smith et al.,
2016). In accordance with previous results (Coutinho et al., 2016), we
show that this assumption is likely to be valid under stabilizing or
weakly fluctuating selection (Savage et al., 2007; Merico et al., 2009;
Acevedo-Trejos et al., 2015), promoting rather unimodal trait dis-
tributions with small variances. However, observed size distributions of
phytoplankton communities in various habitats were often heavily

Fig. 3. Biomass (A–C), mean trait (D–F) and trait variance (G–I) dynamics of the prey community (green) and the 3 predator species that are specialized on low
(black), intermediate (dark blue) and high (light blue) trait values of the prey community under stabilizing selection. In order to distinguish the lines, we added some
biomass to the equilibrium values of the two remaining predators. Results shown for the full trait distribution model (FD model, A, D and G), the beta distribution
based aggregate model (BA model, B, E and H) and the normal distribution based aggregate model (NA model, C, F and I). The dashed-dotted red lines in (D)–(I)
indicate the ecological feasible minima and maxima of the mean and variance. The initial mean trait value of the prey community was set to 0.25. Note a value of

≈ν 0 implies that the prey community is hardly adaptive anymore.

Table 2
Average simulation time (mean ± standard deviation in seconds, number of
repetitions= 10) of the full trait distribution model (FD) and normal dis-
tribution based (NA) and beta distribution based (BA) aggregate models for
stabilizing (cf. Fig. 3), fluctuating (cf. Fig. 4) and disruptive (cf. Fig. 6) selection
when numerically integrating the corresponding model versions for 10,000
time steps.

Selection Pressure FD model BA model NA model

Stabilizing 7.82 ± 0.04 2.30 ± 0.04 2.27 ± 0.05
Fluctuating 38.31 ± 0.12 12.22 ± 0.06 15.58 ± 0.18
Disruptive 8.02 ± 0.54 2.58 ± 0.34 2.34 ± 0.1
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skewed or flat, likely caused by strongly fluctuating or disruptive se-
lection. Skewed and bimodal size distributions were also frequently
observed in other aquatic (Tackx et al., 1994; Downing et al., 2014) and
terrestrial (Maurer et al., 2004; Thibault et al., 2011) communities.
Therefore, normal distribution-based aggregate (NA) models are likely
to be inappropriate for many natural systems (Coutinho et al., 2016).

We aimed to overcome these limitations by investigating the be-
havior of a new trait-based aggregate model, based on the assumption
that the trait values are beta-distributed. In contrast to the normal
distribution, the beta distribution is defined on a finite range, as are
presumably all ecologically relevant traits such as body size, generation
times or feeding rates. As a result, the beta distribution can be unimodal
(and symmetric), heavily skewed, or bimodal, depending on its mean
and variance. Additionally, it exhibits strong negative correlations be-
tween the lower and higher moments in line with the observed phy-
toplankton size distributions.

4.1. Performance of trait-based aggregate models under different selection
regimes

A comparison of the biomass and trait dynamics of a full trait dis-
tribution (FD) model with the ones of a beta distribution-based aggregate
(BA) model revealed that a corresponding moment closure can strongly
improve the reliability of trait-based aggregate models. We also applied

the method to other models found in the literature (Appendix B),
showing that our results are not specific to particular model choices.
Under stabilizing and fluctuating selection, we observed an almost per-
fect match between the biomass and trait dynamics of the FD and BA
models. This result was independent of the initial conditions, and relies
mainly on the fact that the skewness S( ) of the trait distribution and the
curvature of the fitness landscape at the mean trait value x( )
∂ ∂ =F x( / | )x x

2 2 jointly prevent x from getting locked at a local fitness
maximum (Appendix E). In contrast to previous results where the ex-
istence of convergent stable fitness minima or convergent unstable fitness
maxima relies on frequency-dependent selection (e.g. Abrams et al.,
1993b), the mechanism described above can stabilize fitness minima or
destabilize fitness maxima even in the absence of frequency-dependent
selection (Appendix E). Nevertheless, a certain amount of standing trait
variation ν( ), and thus immigration, was still needed to maintain ongoing
changes in x under fluctuating selection (for details see Appendix C). The
close correspondence between the biomass and trait dynamics of the FD
and BA models is in line with a statistical comparison of different ag-
gregate models linked to empirical size distributions of phytoplankton
communities (Gaedke and Klauschies, 2017). The best approximation of
the rate of change of the aggregate properties of the corresponding FD
model was obtained with a moment closure approach based on the ob-
served negative correlations between the higher and lower central mo-
ments of the phytoplankton size distributions.

Fig. 4. Biomass (A–C), mean trait (D–F) and trait variance (G–I) dynamics of the prey community (green) and the 3 predator species that are specialized on low
(black), intermediate (dark blue) and high (light blue) trait values of the prey community under fluctuating selection. For further details see Fig. 3.
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In contrast, the NAmodel predicted biomass and trait dynamics that
differed strongly from the ones of the BA and FD models. For example,
the changes in x did not cover the entire trait range, but exhibited
small-amplitude oscillations. Consequently, one or two of the three
predators went extinct. In addition, the NA model showed a high sen-
sitivity to initial conditions under fluctuating selection. In many cases,
x surpassed its natural limits, because the NA model lacks an inherent
mechanism to prevent this. In contrast, the BA model entails a skew-
ness-mediated feedback between x and ν close to the extremes which
arises from the upper and lower limits of the beta distribution, keeping
x within its ecologically feasible range. When x approaches one of the
extremes, S will always increase in modulus and have the opposite sign
of the fitness gradient (see Eq. (18) and Fig. 2E), leading to a strong
decline of ν (see Eq. (14)). As a result, the rate of change of x slows
down quickly, given that ν scales dx dt/ , eventually stopping x at or
close to one of the extremes (for details see Appendix D). This shows
that temporal changes in S are very important for restricting x to its
ecologically feasible range by promoting a reduction of ν when x ap-
proaches one of the extremes.

Investigating the moment closure equations of the beta distribution
in more detail also reveals that a feedback between ν and K ensures ν to
be bounded to its ecologically feasible range in the BA model. For

example, assuming the trait distribution to be symmetric, an increase of
ν leads to a decline of K (Eq. (19) and Fig. 2F) because only rather flat
distributions can accommodate large values of ν. When ν approaches its
maximum value of 0.25, K decreases towards one, indicating a Ber-
noulli distribution, which is a special (extreme) case of a symmetric
bimodal distribution where all biomass is allocated to the shoulders of
the trait distribution and none to the tails or the mean. Hence, the factor
in front of the second term of the rate of change of ν becomes zero (see
Eq. (14)), so ν cannot grow further. In contrast, the normal distribution
does not exhibit lower and upper limits and, in addition, its kurtosis
does not depend on ν, allowing ν to surpass its natural limit in NA
models (cf. Tirok et al., 2011).

The good approximation of the FD model by the BA model under
fluctuating selection agrees with recent findings of a stochastic popu-
lation model for endemic infections. A moment closure based on the
discrete beta-binomial distribution improved the reliability of a corre-
sponding aggregate model to adequately represent the temporal de-
velopment of x and ν of the probability distribution of infected in-
dividuals of a susceptible-infected (SI) logistic model (Krishnarajah
et al., 2005). Furthermore, the beta-binomial distribution-based mo-
ment closure was found to clearly outperform other moment closure
approaches based on e.g. the normal or binomial distribution in

Fig. 5. Temporal mean (solid line)± standard deviation (dashed line) of the total biomass (A–C), mean trait (D–F) and trait variance (G–I) of the prey community in
dependence of the initial mean trait value for the full trait distribution (FD) model (A, D, G), beta distribution based aggregate (BA) model (B, E, H) and normal
distribution based aggregate (NA) model (C, F, I) under fluctuating selection. The dashed-dotted red lines in (D)–(I) indicate the ecological feasible minima and
maxima of the mean and variance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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matching the overall shape properties of the quasi-stationary distribu-
tion of a SIS logistic model (Clancy and Mendy, 2011).

Under disruptive selection both aggregate models failed to reproduce
the biomass and trait dynamics of the FD model, exhibiting a bimodal
distribution with maximum ν. Despite the fact that our model gives rise to
frequency-dependent selection and thus may enable the emergence of
convergent stable fitness minima in aggregate models (cf. Abrams et al.,
1993b), our analysis presented in Appendix E shows that such minima do
not exist in NA models with a single predator, leading to the same stability
conditions for x with or without frequency-dependent selection. Essentially,
the normal distribution cannot represent a bimodal distribution where x is
located at the fitness minimum, and thus is no longer representative of the
entire community. Consequently, x always moves towards a local fitness
maximum in the NA model at least under frequency-independent selection,
where ∂ ∂ =F x/ |x x

2 2 is negative, so ν tends to zero over time when no other
source of standing trait variation exists (Appendix E). This is very important
because high functional diversity may reduce the overall performance of the
community because of suboptimal phenotypes (i.e., due to negative second
derivatives at the optimal mean trait value) but at the same time may en-
able the community to adapt to new fitness optima when the environment
is changing (Norberg et al., 2001).

In general, a strong reduction in the trait variance of aggregate
models due to the fitness gradient approximation may lead to a

mismatch between the timescales of the aggregate model and a corre-
sponding FD model (Coutinho et al., 2016) which likely hampers the
application of aggregate models to natural systems (but see Terseleer
et al., 2014 for an example). Furthermore, in the NA model, x cannot
overcome a fitness minimum separating different peaks from each
other, which strongly contrasts with FD models (Coutinho et al., 2016)
and potentially also with BA models (Appendix E). Hence, considering
local fitness gradients instead of entire fitness landscapes necessarily
assumes the absence of multiple concurrent peaks in the fitness land-
scape. In contrast, our results demonstrate that higher derivatives of the
fitness function and higher moments of the trait distribution are re-
quired to drive changes of the aggregate properties into the right di-
rection under disruptive selection. As shown in Appendix E, the nega-
tive correlations between the lower and higher moments, entailed in
the beta distribution and observed in the size distributions of the
phytoplankton communities, may contribute to the maintenance of ν
and thus functional diversity over time. In fact, ν exhibits a potential
stable fixed point larger than zero if x is located at a fitness minimum,
where the curvature of the fitness function is positive (see Fig. E1).
Since skewness can stabilize a fixed point of x at a fitness minimum, a
stable solution of a BA model can exist with >ν 0 even without im-
migration (for details see Appendix E). Indeed, when the skewness and
the local fitness gradient exhibit the same sign, an increase in the

Fig. 6. Biomass (A–C), mean trait (D–F) and trait variance (G–I) dynamics of the prey community (green) and the 3 predator species that are specialized on low
(black), intermediate (dark blue) and high (light blue) trait values of the prey community under disruptive selection. For further details see Fig. 3. Note the different
scale of the y-axis in panel F.
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variance is promoted (Norberg et al., 2001). However, in our case the
second order approximation of the fitness function entailed in the BA
model was not sufficient to maintain >ν 0. As a result, additional
processes, like immigration or mutation, may be required to ensure

>ν 0 over time (Merico et al., 2014; Coutinho et al., 2016).
Various mechanisms have been used to maintain ν (cf. Merico et al.,

2014). For example, while mutation is often viewed to have overall small
effects on dx dt/ and dν dt/ (Day, 2005), immigration strongly influences
them at low densities (Appendix E). Furthermore, in the absence of mu-
tational bias, mutation has little impact on dx dt/ while preventing ν from
getting vanishingly small, a feature which can be derived when modelling
the mutation process as trait diffusion (Coutinho et al., 2016). As a result,
NA models are sensitive to the added source of standing trait variation
and, thus, to the choice of mechanism used to maintain ν (Coutinho et al.,
2016). This holds also for BA models because the sum of a beta distribu-
tion and another trait distribution is not necessarily beta-distributed, that
is, the moment closure equations might interfere with the other me-
chanism used to maintain ν. For example, adding standing trait variation
to dν dt/ of a BA model may strongly interfere with dx dt/ when x is close
to one of the extremes, because the moment closure equations can no
longer represent adequately the actual values of S and K under such
conditions. In fact, ν has to become very small when x approaches one of
the extremes. Hence, accounting for a process that only leads to an

increase in ν without pushing x towards intermediate values will generally
not work within the framework of a BA model. Consequently, we could
not derive a BA model that incorporates mutation as diffusion with a re-
flecting boundary because the beta distribution is defined on an open
interval. More generally, these results underline the need to understand
more clearly the potential effects of immigration and mutation on bio-
mass-trait feedbacks in trait-based aggregate models.

4.2. Relevance of our findings for evolutionary ecology

The aggregate model approach used in this study to describe the
temporal dynamics of the aggregate properties of the trait distribution
of a community is akin to various mathematical descriptions of trait
adaptation in evolutionary ecology. In line with classical quantitative
genetics (QG) models that describe rapid or short-term evolution within
a population (Slatkin, 1979; Taper and Case, 1992; Day, 2005), ag-
gregate models do not assume a separation of ecological and evolu-
tionary times scales. Rather, they consider explicitly the dynamical
feedback between trait and biomass dynamics within a community
(Norberg et al., 2001; Merico et al., 2009). In addition, both model
approaches explicitly allow for standing trait variation and often rely on
the assumption that the trait distribution is (and remains) normally
distributed, thereby enhancing numerical or analytical tractability of

Fig. 7. Temporal mean (solid line)± standard deviation (dashed line) of the total biomass (A–C), mean trait (D–F) and trait variance (G–I) of the prey community in
dependence of the initial mean trait value for the FD model (A, D, G), BA model (B, E, H) and NA model (C, F, I) under disruptive selection. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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the model (Taylor and Day, 1997; Coutinho et al., 2016). This as-
sumption is valid at the population level when considering the evolu-
tion of a quantitative trait in which numerous loci determine the in-
dividual’s phenotype, with each locus having a small additive effect on
the phenotype (Slatkin, 1979; Kirkpatrick and Rousset, 2005). Essen-
tially, in case of random mating, sexual reproduction and recombina-
tion, the trait distribution of a population can often be well approxi-
mated by a normal distribution with a particular x and ν (Lande, 1976;
Barton and Turelli, 1989). In contrast, there exists hardly any theore-
tical or empirical foundation for the Gaussian approximation at the
community level, where trait changes mainly rely on species sorting
(Gaedke and Klauschies, 2017). Furthermore, at the population level,
also various mechanisms exist that may promote non-normally dis-
tributed trait values, including assortative mating in sexual populations
or clonal sorting in asexual populations (Doebeli et al., 2007; Sasaki and
Dieckmann, 2011). Hence, the shape of trait distributions may often
strongly deviate from a Gaussian including skewed or bimodal trait
distributions. Our results show that corresponding changes in skewness
and kurtosis may strongly influence the biomass and trait dynamics
and, therefore, model predictions (cf. Fig. 4).

In contrast to many aggregate models that allow for simultaneous
changes in x and ν (Norberg et al., 2001; Coutinho et al., 2016; but see
Merico et al., 2014), QG models often focus on changes in mean trait
values by assuming ν to be constant (Taper and Case, 1985, 1992; Day,
2005). The latter seems to be valid under weak selection in which case
the selective advantage of different phenotypes is vanishingly small,
meaning that the fitness landscape is rather flat and thus, the fitness
function and its first derivative do not change much over the bulk of the
trait distribution (Lande, 1976; Taylor, 1996; Lion, 2018). However,
keeping ν constant may neglect a potentially very important feedback
between dx dt/ and dν dt/ because temporal changes in ν and x are
tightly coupled to each other through their combined effects on the
entire fitness landscape (Appendix A). In line with previous studies
(Norberg et al., 2001; Smith et al., 2016), our results show that the
speed of trait adaptation through higher ν comes at a cost of reduced
fitness at the community level when x is located around a fitness
maximum (Appendix E).

In contrast to QG and aggregate models, the approach of Adaptive
Dynamics (AD) considers long-term evolution to be a mutation-limited
process, giving rise to a separation of ecological and evolutionary time
scales (Parker and Maynard Smith, 1990; Day, 2005). The key as-
sumption of AD is that a new but rare mutant with a slightly different
phenotype than the resident phenotype arises at a point where the
monomorphic resident population has reached its demographic equili-
brium (Geritz et al., 1998; McGill and Brown, 2007). If the phenotype of
the rare mutant is mal-adapted, it will necessarily die out, whereas it
will spread when it is advantageous, replacing the former phenotype of
the resident population. Evolution of the resident phenotype is then
driven by a sequence of rare mutation and strong selection (Day, 2005;
Kirkpatrick and Rousset, 2005). AD focuses on finding the evolutionary
endpoints, i.e. evolutionary singular strategies, which can be reached
by gradual evolution starting from a strategy nearby (McGill and
Brown, 2007). Such convergent stable strategies (CSS) can be either
resistant (stable - ESS) or vulnerable (branching point) to invasion by
other nearby strategies (Geritz et al., 1998; Doebeli et al., 2007). In the
latter case, traits evolve to a point where selection becomes disruptive
giving rise to dimorphism (Rueffler et al., 2006; McGill and Brown,
2007). At this point, it becomes necessary to follow the evolution of two
distinct phenotypes. This contrasts with our BA model, which describes
the temporal development of a continuous trait distribution that may
become bimodal and thus exhibit two dominant but distinct pheno-
types. Furthermore, aggregate models explicitly consider biomass and
trait dynamics that occur on similar time scales and therefore account
for the fact that changes in x or ν may strongly affect the stability and
shape of biomass dynamics (Abrams and Matsuda, 1997; Coutinho
et al., 2016; Cortez and Patel, 2017).

4.3. Future perspectives

To overcome the overall weak performance of trait-based aggregate
models under disruptive selection, one may use a hybrid model. Here
the mean trait and variance dynamics of two or more different species
or functional groups are modeled separately, using an aggregate model
formulation for each species (Norberg et al., 2012; Klauschies et al.,
2016). Hence, the community is subdivided into a limited number of
species or functional groups, whose mean trait values and trait var-
iances can, in turn, adapt in response to selection (cf. Norberg et al.,
2001; Terseleer et al., 2014). In the context of genetics, a similar ap-
proach was developed and advocated by Sasaki and Dieckmann (2011)
where the trait distribution is decomposed into a sum of unimodal trait
distributions corresponding to the individual morphs of a population.
This is reasonable when the entire trait distribution is oligomorphic or
multimodal, meaning that it comprises a finite number of distinct
peaks. Each peak is associated with a different morph that can be
viewed as a quasi-species characterized by its particular trait distribu-
tion. In line with QGmodels (Lande, 1976; Abrams et al., 1993b), dx dt/i
of morph i follows the product of νi and ∂ ∂ =F x/ |i i x xi i under the as-
sumption that all νi are small for all i (Sasaki and Dieckmann, 2011).
Although our derivation of an aggregate model is also based on the
assumption that ν is sufficiently small (cf. Appendix A), our results
show that this approximation may capture also more complex scenarios
where ν is temporarily quite large when assuming the trait values to be
beta-distributed (cf. Fig. 4). Hence, a promising avenue for future re-
search would be to combine our novel moment-closure approximation
based on the beta distribution with a hybrid or oligomorphic dynamics
approach. The alternative, to model the temporal dynamics of higher
moments or to extend the second-order approximation, appears less
promising given that the corresponding equations and numerical si-
mulations become very demanding.

We established that the choice of a suitable moment closure ap-
proach strongly depends on the prevailing selection regime. Hence, it is
important to develop reliable tools to characterize the selection pres-
sure on the trait composition of natural communities. In the approach
of Adaptive Dynamics, the predominant selection pressure on a con-
vergent stable strategy x * of a population is estimated based on the sign
of the second derivative of the mutant’s invasion fitness with respect to
its own strategy x evaluated at the resident strategy x , i.e. ∂ ∂ =F x/ |x x

2 2 *.
Negative values indicate stabilizing selection and, thus, an evolutionary
stable strategy (ESS) whereas positive values indicate disruptive selec-
tion and, thus, an evolutionary branching point that may give rise to
dimorphisms (Geritz et al., 1998; McGill and Brown, 2007). These
constraints are valid when assuming weak selection, which implies that
the distribution is tightly clustered around x (Lion, 2018). They also
hold when selection is not weak, but a separation of time scales be-
tween ecology and evolution under rare mutations is assumed (Day,
2005). In this case, advantageous novel phenotypes are strongly and
positively selected, so that a monomorphic resident community can be
assumed at the time a new mutant arises (Geritz et al., 1998). Ac-
cordingly, a recently proposed approach to distinguish between the
prevalence of stabilizing or disruptive selection in NA models is based
on the sign of their ∂ ∂ =F x/ |x x

2 2 (Acevedo-Trejos et al., 2016). However,
using a normal distribution-based moment closure relies on the as-
sumption that the environment imposes stabilizing or weak directional
selection on the trait considered. Hence, a verification of stabilizing
selection cannot be attained by considering actual properties of the
resulting equations of a NA model, because the result will not be in-
dependent of the assumption of normality, and thus a prevalence of
stabilizing selection. As detailed in Appendix E, the temporal changes of
x and ν promote negative values of ∂ ∂ =F x/ |x x

2 2 without necessarily
implying stabilizing selection. In general, the sign of ∂ ∂ =F x/ |x x

2 2 does
only inform reliably about the prevalence of stabilizing or disruptive
selection when the fitness landscape can be well described by a para-
bolic function for which higher derivatives vanish (cf. Abrams et al.,
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1993a). In all other cases, the view that ∂ ∂ <=F x/ | 0x x
2 2 provides clear

evidence for stabilizing selection and ∂ ∂ >=F x/ | 0x x
2 2 for disruptive

selection is oversimplified and potentially wrong. This happens because
concomitant changes in x also promote negative values of ∂ ∂ =F x/ |x x

2 2

under clearly disruptive selection regimes where two distinct fitness
maxima co-occur. Hence, approaches developed in population genetics
(cf. Nelson et al., 2005; Siepielski et al., 2009; Fox et al., 2010) may
deliver more reliable estimates of the prevailing selection pressure on
the trait composition of natural communities.

Finally, in line with AD and optimality approaches (Parker and
Maynard Smith, 1990), we may further enhance our understanding of
trait-based aggregate models by considering quasi-equilibrium ap-
proximations based on a separation of time scales of the ecological
(biomass) and the evolutionary (trait) dynamics (Geritz et al., 1998;
Cortez and Patel, 2017). For example, when ν is sufficiently small, we
can assume the evolutionary dynamics to be much slower than the
ecological dynamics. In this case, the ecological variables will reach a
quasi-equilibrium at the current, changing trait values (Day, 2005;
Lion, 2018). In contrast, when organisms are able to quickly adapt their
traits in response to selection, we can assume that the evolutionary
dynamics occur on a much faster time scale than the ecological dy-
namics (Smith et al., 2009; Abrams, 2010; Pahlow and Prowe, 2010).
Analyzing such fast-slow dynamics may allow for the derivation of
general results under simplifying assumptions (Cortez, 2016; Cortez
and Patel, 2017).

4.4. Final remarks

The small number of state variables of trait-based aggregate models
may enable rigorous analyses of their equations (Appendix E; Norberg
et al., 2001) and significantly reduce their simulation times when
compared to corresponding full trait distribution (FD) models (Table 2;
Acevedo-Trejos et al., 2016). However, as moment approximations do
not come with an estimate of the approximation error, one usually has
to resort to numerical simulations of the FD model to judge when the
approximation is good enough to replicate the behavior of the FD
model. In practice, this may question the general applicability of trait-
based aggregate models, even though an aggregate model usually does
not need to be validated for the entire parameter space nor the whole
simulation time. Our work improves this situation in three ways. In line
with Coutinho et al. (2016), we first present detailed evidence that a
general agreement between FDmodels and their aggregate counterparts
is closely linked to the predominant selection regime. Hence,

comparing FD and corresponding aggregate models under different but
well-defined environmental conditions revealed the structural compo-
nents, i.e. the shape properties of the fitness landscape and trait dis-
tribution that are responsible for the success or failure of the approx-
imations and, thus, which underlie the dynamics of the FD model.
Therefore, knowledge about the shape of natural trait distributions or
corresponding selection regimes may sufficiently inform about the be-
havior of trait-based aggregate models compared to corresponding FD
models, and circumvent the need for a detailed model comparison
based on numerical simulations. Second, we show that the beta dis-
tribution captures important shape properties of natural and simulated
trait distributions, which cannot be reflected by a Gaussian but which
are important to restrict changes in the mean trait and variance values
to their ecologically feasible ranges. In contrast, NA models usually
require additional functional terms to keep traits bounded. Hence,
conducting a moment closure based on the well-defined relationships
between the lower and higher moments of the beta distribution instead
of the normal distribution greatly enhanced the reliability of aggregate
models under fluctuating selection. This increases the range of situa-
tions that can be treated successfully using moment approximation
methods. Finally, we obtained a more comprehensive understanding of
the mechanisms that may promote the maintenance of functional di-
versity in trait-based aggregate models, by analyzing the aggregate
model equations. We explicitly provide the connection between higher
moments of the trait distribution and higher derivatives of the fitness
landscape and the preservation of the trait variance for a quite general
class of models (see Appendix E).

To conclude, our study shows that conducting a moment closure
based on the beta distribution rather than the normal distribution may
strongly improve the reliability of aggregate models when applied to
natural communities, e.g. with respect to the temporal average and
variation of the communities’ biomass and trait composition. This holds
in particular when mean trait values change over time, e.g. due to
strong fluctuating selection caused by endogenous or environmental
changes such as seasonal temperature variation.
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Appendix A. Derivation of an aggregate model

Temporal changes in the aggregate properties of a community, i.e. its total biomass R( )T , mean trait x( ) and trait variance ν( ), can be conveyed
from the changes of the population biomasses of the individual species:

∂
∂

= +R x
t

F x R x I( ) ( ) ( ) , (A1)

where F x( ) denotes the per capita net growth rate – the fitness function – of the species with trait value x , ranging between 0 and 1, whose biomass is
R x( ). The species’ fitness function F x R x ν( , , , )T generally depends on the entire trait distribution of the community such asRT , x and ν. However, for
the sake of brevity, we stick to F x( ) throughout the derivation. The small but constant immigration rate I ensures long-term persistence of all trait
values, i.e. species. The aggregate properties of a community are calculated according to the following set of equations:

∫=R R x dx( )T
0

1

(A2)

∫=x
R

xR x dx1 ( )
T 0

1

(A3)

∫= −ν
R

x x R x dx1 ( ) ( )
T 0

1
2

(A4)

Instead of describing the dynamics of the community with differential equations defined at the population level, one may focus directly on a
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system of differential equations that describes the rates of change of the community’s aggregate properties, thereby allowing insight into the
properties of the fitness landscape and trait distribution that drive their dynamics. In general, such aggregate models approximate the temporal
development of the aggregate properties by first truncating the Taylor series of the fitness function developed around x after some low-order, e.g.
second-order, terms. Afterwards, the resulting set of equations has to be closed by expressing the higher central moments such as skewness S( ) and
kurtosis K( ) in terms of the lower central moments modelled, such as x and ν. As all odd moments, skewness quantifies some degree of asymmetry of
a distribution. Left-skewed distributions exhibit negative values of S whereas right-skewed distributions exhibit positive values of S. In contrast,
kurtosis quantifies the amount of dispersion of mass around the shoulders ±x ν( ) of a distribution. Based on this, high values of K are associated
with distributions having high mass at their center x( ) and tails ±x ν( 2 ) compared to their shoulders.

A.1. Second-order approximations of the rates of change of the aggregate properties

The rate of change of RT is given by the integral of the rate of change of R x( ) with respect to x over the trait range [0,1]:

∫ ∫ ∫ ∫ ∫= = ∂
∂

= + = +dR
dt

d
dt

R x x R x
t

x R x F x I x R x F x x I x( )d ( ) d ( ( ) ( ) )d ( ) ( )d dT
0

1

0

1

0

1

0

1

0

1

(A5)

Noting that ∫ =dx 1
0

1
and expanding the fitness function F in a Taylor series around x , we get:

∫ ∑= − ∂
∂

+
=

∞

=

dR
dt

R x x x
k

F x
x

x I( ) ( )
!

( ) dT

k

k k

k
x x

0

1

0 (A6)

We can rearrange the terms of Eq. (A6) to express the rate of change of RT as an infinite sum of products of the k-th derivative of the fitness
function and the k-th central moment M( )k of the trait distribution:

∫∑= ∂
∂

− +
=

∞

=

dR
dt

R
k

F x
x R

R x x x dx I1
!

( ) 1 ( )( )T
T

k

k

k
x x T

k

M

0 0

1

k

  
(A7)

To highlight the interaction between the higher-order central moments and the higher derivatives we can rewrite Eq. (A7) in the following way:

⎜ ⎟= ⎛
⎝

+ ∂
∂

+ ∂
∂

+ ∂
∂

+ …⎞
⎠

+=
= = =

dR
dt

R F x ν F x
x

M F x
x

M F x
x

I( )|
2

( )
6

( )
24

( )T
T x x

x x x x x x

2

2
3

3

3
4

4

4 (A8)

given that =M 10 , =M 01 and =M ν2 .
Similarly, the rate of change of x is given by the quotient rule of differential calculus using Eq. (A3):

∫ ∫=
⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟ −⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥

dx
dt R

d
dt

xR x dx R xR x dx dR
dt

1 ( ) ( )
T

T
T

2
0

1

0

1

(A9)

Using the definition of x , Eq. (A9) can be expressed as:

∫= ⎛

⎝
⎜

∂
∂

− ⎞

⎠
⎟

dx
dt R

x R x
t

dx x dR
dt

1 ( )
T

T

0

1

(A10)

By extending the first term of Eq. (A10) with x we can eliminate its second term:

∫ ∫ ∫ ∫ ∫= ⎛

⎝
⎜ − + ∂

∂
− ⎞

⎠
⎟ = ⎛

⎝
⎜ − ∂

∂
+ ∂

∂
− ⎞

⎠
⎟ = − ∂

∂
= − +dx

dt R
x x x R x

t
dx x dR

dt R
x x R x

t
dx x R x

t
dx x dR

dt R
x x R x

t
dx

R
x x R x F x I dx1 ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) 1 ( )( ( ) ( ) )

T

T

T

T

T T0

1

0

1

0

1

0

1

0

1

(A11)

Evaluating the effect of external immigration I leads to:

∫ ∫ ∫ ∫⎜ ⎟− + − = − + ⎛
⎝

− ⎞
⎠

= − + ⎛
⎝

− ⎞
⎠R

x x R x F x dx I
R

x x dx
R

x x R x F x dx I
R

x x x
R

x x R x F x dx I
R

x1 ( ) ( ) ( ) ( ) 1 ( ) ( ) ( )
2

1 ( ) ( ) ( ) 1
2T T T T T T0

1

0

1

0

1 2

0

1

0

1

(A12)

Expanding again the fitness function F in a Taylor series around x and rearranging the terms thereafter we get:

∫ ∫∑ ∑= − ∂
∂

− + ⎛
⎝

− ⎞
⎠

= ∂
∂

− + ⎛
⎝

− ⎞
⎠=

∞

= =

∞

=

+

+

dx
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k
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x x dx I
R

x
k

F x
x R

R x x x dx I
R

x1 ( ) ( )
!

( ) ( ) 1
2

1
!

( ) 1 ( )( ) 1
2T k

k k

k
x x T k

k

k
x x T

k

M

T0

1

0 0 0

1
1

k 1

  
(A13)

with +Mk 1 denoting the (k+1)-th central moment of the trait distribution. Again, we rewrite Eq. (A13) to highlight the interaction between the
higher central moments of the trait distribution and the higher derivatives of the fitness function:

⎜ ⎟= ⎛
⎝

∂
∂

+ ∂
∂

+ ∂
∂

+ …⎞
⎠

+ ⎛
⎝

− ⎞
⎠= = =

dx
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F x
x

M F x
x

M F x
x

I
R

xν ( )
2

( )
6

( ) 1
2x x x x x x T

3
2

2
4

3

3 (A14)

given that =M 01 and =M ν2 .
Finally, the rate of change of ν is also given by the quotient rule of differential calculus:
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∫ ∫=
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⎣
⎢

⎛
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⎜ − ⎞
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⎟ −⎛

⎝
⎜ − ⎞

⎠
⎟

⎤

⎦
⎥
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x x x R x x x dR
dt
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2
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1
2
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(A15)

Now we use the product rule of differential calculus and the definition of the variance to display Eq. (A15) as:

∫ ∫= ⎛

⎝
⎜

∂
∂

− + − − ⎞

⎠
⎟

dν
dt R

R x
t

x x dx R x d x x
dt

dx ν dR
dt
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T

T

0

1
2

0

1 2

(A16)

Applying the chain rule of differential calculus, we see that the second term of Eq. (A16) is zero:

⏟
∫ ∫ ∫ ∫− = − − = − − −

=
= =

R
R x d x x

dt
dx

R
R x x x d x x

dt
dx

R
R x x x dx

dt
dx dx
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1 2
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(A17)

Deploying this result into Eq. (A16) leads to:

∫ ∫= ⎛

⎝
⎜

∂
∂

− − ⎞

⎠
⎟ = ⎛

⎝
⎜ + − − ⎞

⎠
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(A18)

Again, evaluating the effect of external immigration I leads to:

∫ ⎜ ⎟⎜ ⎟− = ⎛
⎝

− + ⎞
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⎝
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Leading to:

∫ ⎜ ⎟= − − + ⎛
⎝

+ ⎛
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(A20)

Conducting a Taylor expansion of the fitness function around x in the first term and applying the results from Eq. (A7) to its second term, dν dt/
can be written as:
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(A21)

In analogy to Eq. (A14), we rewrite Eq. (A21) in the following way:
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(A22)

Since skewness S( ) and kurtosis K( ) are defined as the standardized central moments of third =( )M Sν3
3
2 , and fourth =M Kν( )4

2 orders of a trait
distribution, a second-order approximation in F of dR dt/T (Eq. (A8)), dx dt/ (Eq. (A14)) and dν dt/ (Eq. (A22)) leads to the aggregate model defined by
the Eqs. (12)–(14) in the methods section. This approximation is good when v is small or the non-linearity of the fitness function F is weak (Abrams
et al., 1993a; Taylor and Day, 1997; Gaedke and Klauschies, 2017).

Finally, since the rates of change of the lower central moments depend on the higher central moments, one has to close the system of differential
equations. This is usually achieved by expressing the higher moments in terms of the lower ones. There are different moment closure techniques
available, each making distinct assumptions about the shape of the trait distributions (Wirtz and Eckhardt, 1996; Norberg et al., 2001; Merico et al.,
2009). For simplicity, a normal distribution-based moment closure is often conducted (Tirok et al., 2011; Terseleer et al., 2014; Acevedo-Trejos et al.,
2015) where =S 0 and =K 3 are independent of x and ν. This strongly reduces the complexity of the aggregate model defined by Eqs. (16) and (17)
at the cost of assuming the trait to be defined on an infinite range and the trait distribution to be unimodal and symmetric. However, ecologically
important traits such as body size or time spent for searching or handling prey items are restricted to a finite range. In addition, fluctuating or
disruptive selection may promote trait distributions exhibiting skewness or bimodality (Coutinho et al., 2016; Gaedke and Klauschies, 2017). For this
reason, we will derive an alternative moment closure based on the assumption that the trait distribution follows the shape of a beta distribution,
which can accommodate such features (cf. Fig. 1).

A.2. Beta distribution-based moment closure

Assuming the trait value x to be beta-distributed, R x( ) can be written as:

= −− −R x a b R
B a b

x x( ; , )
( , )

(1 )T a b1 1
(A23)
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with ∫= −− −B x x dx(1 )a b
0
1 1 1 being the beta function and >a 0 and >b 0 being the shape parameters of the beta distribution. The mean x ,

variance ν, skewness S and kurtosis K of the beta-distribution are given by (Gupta and Nadarajah, 2004):

=
+

x a
a b (A24)

=
+ + +

ν ab
a b a b( ) ( 1)2 (A25)

= − + +

+ +
S b a a b

a b ab

2( )( 1)

( 2)( )

1
2

1
2 (A26)

= − + + − + +
+ + + +

K a b a b ab a b
ab a b a b

6( ) ( 1) 6 ( 2)
( 2)( 3)

2

(A27)

Since the beta distribution only depends on the two shape parameters a and b, we can derive corresponding moment closure equations for an
aggregate model in that S and K of the beta distribution are expressed in terms of x and ν only.

First we have to employ Eqs. (A24) and (A25) to express a and b as functions of x and ν. Substituting + =a b a
x and = −b a x

x
1 (from Eq. (A24))

into Eq. (A25), we get:

=
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a x x
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1
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x
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(A28)

Rewriting Eq. (A28) in terms of a as a function of x and ν leads to:

= − −a x x x ν
ν

(1 )2

(A29)

Furthermore, substituting Eq. (A29) into an alternative form of Eq. (A24), i.e. = −b a x
x

1 , leads to an expression of b as a function of x and ν:

= − − −b x x x ν
ν

(1 ) (1 )2

(A30)

Now we use Eqs. (A24), (A25), (A26), (A29) and (A30) to express S as a function of x and ν. Rewriting Eq. (A24) as + =a b a
x or = −b a x

x
1 and

Eq. (A25) as + = + +− −ν a b a b ab( ) ( 1) /( )11
2

1
2

1
2 and substituting them sequentially into Eq. (A26) leads to:
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Furthermore, substituting Eq. (A29) into Eq. (A31) now allows to write S as a function of x and ν:
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+
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x ν
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Finally, we use Eqs. (A24), (A27), (A29) and (A32) to express K as a function of x , ν and S. Rewriting Eq. (A27) leads to:
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Now we can simplify the first term of Eq. (A33) by rewriting the first factor and substituting the second factor by the square of S, i.e.
= − + +

+ +
S b a a b

a b ab
2 4( ) ( 1)

( 2)

2
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⎜ ⎟= + + + +
+ +

−
+ +

= ⎛
⎝

+
+ +

+ ⎞
⎠

−
+ +

K a b a b
a b

S
a b

a b
a b

S
a b

2( ) 4( ) 12
4( 3)

6
3

( )
2( 3)

1 6
3

2 2

(A34)

Rewriting Eq. (A24) as + =a b a
x and substituting it into Eq. (A34) leads to:
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Using Eq. (A29), we can express K as a function of x and ν leading to:

⎜ ⎟ ⎜ ⎟=
⎛

⎝
⎜ +

+
⎞

⎠
⎟ −

+
= ⎛

⎝

− −
− − +

+ ⎞
⎠

−
− − +

= ⎛
⎝

− −
− +

+ ⎞
⎠

−
− +

− −

− − − −K S x x ν
x x ν ν

S ν
x x ν ν

x x ν
x x ν

S ν
x x ν2 6

1 6
3

(1 )
2 (1 ) 2 6

1 6
(1 ) 3

(1 )
2 (1 ) 4

1 6
(1 ) 2

x x ν
ν

x x ν
ν

x x ν
ν

(1 )

(1 )
2

(1 )
2 2

(A36)

Finally, rewriting Eqs. (A32) and (A36) in terms of the third and fourth central moments allows us to conduct a beta distribution-based moment
closure plugging the following set of equations into expressions (A8), (A14) and (A22):

= = −
− +

M Sν x ν
x x ν
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2
(A37)
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Hence, trait distributions with smaller ν are unimodal but also often peaked (high K ) and skewed (high S| |) depending on x . In contrast, trait
distributions with larger ν tend to be flat or in its extreme bimodal (low K ) and symmetric ≈S(| | 0) (Fig. 1).

Appendix B. Sensitivity analysis I – changes in model structure

To test the robustness of our results with respect to changes in the model structure we conducted numerical simulations with three other
ecological models partly used in recent studies demonstrating the suitability of aggregate model approaches. First, we investigated the predator-prey
model from Merico et al. (2009) in which the trade-off between the nutrient uptake efficiency of the prey and its defense against predation imposes
stabilizing selection on the trait distribution of the prey community. Second, we explored the species competition model from Norberg et al. (2001)
in which recurrent changes of an environmental factor such as temperature impose fluctuating selection on different species. Third, we analyzed a
modified version of our predator-prey model from the main text in which a trade-off between the vulnerability of the prey species with respect to
grazing by the two specialist predators imposes disruptive selection on the trait distribution of the prey community. In all three cases, we first run
numerical simulations of the full trait distribution (FD) model by discretizing the trait axes of the associated community (n=101). Afterwards, we
derived the equations of a corresponding aggregate model with a second-order approximation and performed a moment closure either based on a
beta distribution or a normal distribution. Subsequently, we also conducted numerical simulations of the corresponding BA and NA models and
compared their results to the ones of the FD model.

B.1. Full trait distribution model with stabilizing selection

Following Merico et al. (2009) we first consider a chemostat model with a set of prey species (C) that differ in their trait values influencing their
uptake of nutrients (N) and vulnerability to predation by a single predator (B). The corresponding set of differential equations is given as follows:
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The nutrient replenishment in the chemostat depends on the nutrient concentration N0 that enters the chemostat vessel, the dilution rate δ and
the nutrient recycling through prey mortality mC (cf. Merico et al., 2009). In contrast, the nutrient uptake of the prey follows a Michaelis-Menten
Kinetic with the maximum uptake rate μC and the effective half-saturation constant =

∼

− − −K x( )N
K

κ φ x1 ( )
N

1 , which depends on the basal half-saturation

constant ∼KN , the fraction of energy invested in generic biomass κ and the prey’s edibility = − −φ x x κ( ) ( (1 )) 1, which is a function of the prey’s level of
defense x . Given that −φ x κ( )(1 ) can range from 1 to ∞ (for details see Merico et al., 2009) it is impossible to develop a beta distribution-based
aggregate model that considers trait variation in the prey’s edibility because the beta distribution is constrained to the open interval (0, 1). Hence, in
contrast to Merico et al. (2009), we considered trait variation in the prey’s defense level = − −x φ φ κ( ) ( (1 )) 1 that actually varies between 0 and 1. The
prey species are assumed to exhibit a trade-off between their nutrient uptake efficiency K x( )N and defense level x φ( ), which determines the
vulnerability to grazing by the predator. Hence, the partitioning of the remaining fraction of energy −κ(1 ) between nutrient harvesting biomass and
defense biomass is species-specific (for details see Merico et al., 2009). The corresponding shape of the trade-off imposes stabilizing selection on the
trait distribution of the prey community. In addition, foraging on the prey follows a type II functional response with maximum growth rate μB,
conversion efficiency ε and half-saturation constant KC. Like the prey, the predator experiences natural mortality mB and is washed out from the
chemostat with the dilution rate δ.

In accordance with our previous results for stabilizing selection shown in the main text (Fig. 3), both aggregate models perfectly captured the
macroscopic properties of the FD model (Fig. B1). The total biomass of the prey community and the predator biomass exhibited regular oscillations
whereas the mean trait value reached an equilibrium after a short transient. As a result of stabilizing selection, the variance dropped towards zero,
which strongly reduced the adaptive capacity of the prey community (cf. Merico et al., 2009).

The numerical integration of both aggregate models were up to 4 times faster than that of the FD model (Table B1). There was no significant
difference between the simulation times of the BAmodel and the NAmodel. Hence, the results of both aggregate models are reliable under stabilizing
selection and their numerical integration is computationally more efficient than running simulations of the FD model.

B.2. Full trait distribution model with fluctuating selection

In line with Norberg et al. (2001) we further consider a species competition model with a set of species (C) that compete for a shared resource and
that exhibit differences in their trait values. The corresponding equations to describe the temporal changes in the biomasses of the different species
are:
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The model extends logistic growth by including interspecific competition with K andCT being the joint carrying capacity and the sum of all population
biomasses, respectively. The growth rate of a species further depends on its specific phenotype x varying between 0 and 1, the maximum growth rate p and
the state of a time-varying environmental factor = +E A ω t M·sin ( · ) , which oscillates around a fixed value M with amplitude A and frequency ω. To
restrict E and thus the trait distribution to the ecologically feasible range (0, 1) we chose M and A to equal 0.5, respectively. The influence of the
environmental changes on the species’ growth rates depends on the scaling parameter σ . Hence, the recurrent changes in the environmental conditions E
impose fluctuating selection on the underlying populations because different species are favored by the enviroment at different times. Furthermore, the
biomasses of the populations are declining at the mortality rate d. To ensure the coexistence of all species, a constant amount of biomass of each species
was assumed to enter the system through immigration. Hence, we added the immigration rate i to Eq. (B4).

In line with our previous results for fluctuating selection (Fig. 4), the BA model captured the overall shape of the dynamics of the total biomass,
mean trait and trait variance of the FD model and their temporal averages quite well (Fig. B2). In contrast, the NA model agreed with the FD model
only with respect to the time averages of the aggregate properties and the shape of the mean trait dynamics. Generally, the mean trait value of the
community closely tracked the temporal changes of the optimal trait value currently selected by the environment (Fig. B2D–F). However, the
sinusoidal shape of the environmental factor resulted in a time-averaged bimodal distribution of the optimal trait values (Kremer and Klausmeier,
2017). Consequently, the community was generally better adapted during times when the sign of the rate of change of the environmental factor was
changing. This resulted in biomass dynamics where a larger peak in the total biomass at mean trait values close to the extremes followed a smaller
peak in the total biomass at a mean trait value of 0.5 (cf. Norberg et al., 2001). This pattern was nicely encompassed in the results of the BA model
but not in the ones of the NA model (Fig. B2A–C). In contrast to the FD and BA models, the biomass dynamics of the NA model exhibited a lower

Fig. B1. Total biomass (A–C), mean trait (D–F) and trait variance (G–I) dynamics of the prey community (black) and the biomass dynamics (A–C) of the predator
population (blue) under stabilizing selection. Results shown for the full trait distribution model (FD model, A, D and G), the beta distribution based aggregate model
(BA model, B, E and H) and the normal distribution based aggregate model (NA model, C, F and I). The dashed-dotted red lines in (D)–(I) indicate the ecological
feasible minima and maxima of the mean and variance. In line with Merico et al. (2009) we used the following parameter values: =μ 3.3C , =μ 2.25B , =κ 0.8,

=m 0.05C , =m 0.1B , =δ 0.69, =ε 0.25, =N 800 , =K 150C , ∼ =K 0.4N . Note a value of ≈ν 0 implies that the prey community is hardly adaptive anymore.

Table B1
Average simulation time (mean ± standard deviation in seconds, number of repetitions= 10) of the full trait distribution model (FD) as
well as beta distribution based (BA) and normal distribution based (NA) aggregate models for stabilizing (cf. Fig. B1), fluctuating (cf. Fig. B2)
and disruptive (cf. Fig. B3) selection when numerically integrating the corresponding models for 10,000 time steps.

Selection Pressure FD model BA model NA model

Stabilizing 116.63 ± 2.76 29.92 ± 0.14 29.73 ± 0.18
Fluctuating 3.79 ± 0.25 2.26 ± 0.04 2.15 ± 0.05
Disruptive 487.56 ± 39.58 14.84 ± 0.30 17.67 ± 0.78
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frequency and two differently-sized peaks, that were only associated with mean trait values close to the extremes. Furthermore, when the en-
vironmental conditions changed towards more intermediate optimal trait values, a larger range of trait values was favored promoting simultaneous
growth of many different species. Consequently, in the FD model we observed an overall increase in the trait variance that was interrupted by a short
period when the variance declined again. The latter resulted from a strong reduction in the biomasses of species exhibiting more extreme trait values.
Hence, the variance dynamics of the FD model showed a larger peak in the trait variance that preceded a smaller peak (for details see Fig. 2 from
Norberg et al., 2001). In contrast, when the environmental conditions selected for extreme trait values, we observed a strong reduction in the trait
variance. Although the smaller peak of the trait variance was not well expressed in the BA model, the general course of the temporal dynamics of the
trait variance was still very similar to the FDmodel. The BAmodel reflects the frequency and the amplitude of the dynamics as well as the presence of
a pronounced peak in the trait variance at a particular moment in time. In contrast, the NA model showed hardly any temporal variation in the trait
variance. Hence, the accuracy of our novel moment closure method based on the beta distribution strongly exceeded the one of a corresponding
normal distribution-based moment closure approach under fluctuating selection. Our result is further supported by the good performance of a data-
based aggregate predator-prey model from Norberg et al. (2001) that accounted for important statistical relationships between lower and higher
moments.

The numerical integration of both aggregate models was almost twice as fast as that of the FD model whereas the simulation times of the BA
model and the NA model were similar (Table B1).

B.3. Full trait distribution model with disruptive selection

Finally, we consider a model with two different predators (C) that are grazing upon a set of prey species (R) with continuous trait values. In
contrast to our predator-prey model from the main text, we assumed the shape of the feeding functions to be sigmoidal instead of unimodal.
Furthermore, we assumed the strength of resource competition to differ between the different prey species. The corresponding population biomasses
thus change according to the following set of equations:
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Fig. B2. Biomass (A–C), mean trait (D–F) and trait variance (G–I) dynamics of the ecological community (black) under fluctuating selection. Results shown for the
full trait distribution model (FD model, A, D and G), the beta distribution based aggregate model (BA model, B, E and H) and the normal distribution based aggregate
model (NA model, C, F and I). In line with Norberg et al. (2001) we used the following parameter values: =p 0.6, =σ 0.2, =K 10, =i 0.01, =d 0.2, = ⋅ω π2 /365,

=A 0.5, =M 0.5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In the absence of predation, the prey species exhibit logistic growth with r and κ being the maximum growth rate and joint carrying capacity,
respectively. Given that trait differences may result in niche differences between species, the strength of competition may depend on the species’ trait
similarity. Hence, we implemented the competition kernel c (MacArthur and Levins, 1967) and thus assumed that prey species with more similar
trait values are competing more strongly with each other than species with very different trait values. This is in line with the assumption that
intraspecific competition of the prey is larger than interspecific competition, which stabilizes species coexistence. The width of the competition
kernel is determined by the scaling parameter σ . Furthermore, predation follows a type II functional response with a common handling time h and
the predator-specific attack rates a1 and a2 with minimum and maximum values of amin and amax . Hence, the predation rates of the two different
predators depend on the phenotype x of the individual prey species. In line with previous work from Abrams (2006) and Schreiber et al. (2011), we
assumed a trade-off between the prey’s vulnerability to predation by the two specialist predators, the shape of which depend on the parameters s and
w. By using a value of w equal to 0.75, we generated a concave-shaped trade-off curve that imposes disruptive selection on the trait distribution of
the prey community. Nevertheless, we ensured the persistence of all prey by adding the immigration rate I to Eq. (B5).

In line with our previous results for disruptive selection displayed in the main text (Fig. 6), both aggregate models failed to reproduce the
dynamics of the aggregate properties of the FD model. Here, the total biomasses of the prey and predator communities showed regular predator-prey
cycles because the population biomasses of the two predators were synchronized (Fig. B3A). In addition, the trait distribution of the prey community
was symmetric around the mean trait value of 0.5 throughout time (Fig. B3D). Depending on the respective strength of competition and predation,
the shape of the trait distribution of the prey community was either rather uniform or bimodal. At low prey biomasses, immigration strongly
influenced the population dynamics promoting uniform trait distributions of the prey community with variance values down to 1/12 (Fig. B3A and
G). In contrast, a high predation pressure on the prey species with intermediate trait values at high prey biomasses selected for bimodal trait
distributions with variance values up to 0.2. Neither the BA model nor the NA model was able to reproduce these patterns. Despite showing regular
predator-prey oscillations, both aggregate models underestimated the amplitude of the total biomass of the prey community (Fig. B3A–C). Fur-
thermore and in contrast to the FD model, one of the predators went extinct. However, in line with our previous results (e.g. Fig. 5) the values of the
mean trait and trait variance stayed within the ecologically feasible ranges in the BA model (Fig. B3E and H). In contrast, the aggregate properties
surpassed their natural limits in the NA model (Fig. B3F and I).

The numerical integration of both aggregate models was about 30 times faster than that of the FD model, but this strong reduction in simulation time
comes at a too high cost, given that the results of the aggregate models are not reliable. Unexpectedly, the simulation time of the NAmodel was somewhat
longer than the one of the BA model (Table B1). While the Gaussian-based approximation is valid in a narrower parameter range than the beta ap-
proximation, the NAmodel may be more useful in practice if both model types are sufficiently accurate. This may follow from the fact that the NAmodel is

Fig. B3. Biomass (A–C), mean trait (D–F) and trait variance (G–I) dynamics of the prey community (black) and the biomass dynamics (A–C) of the two different
predator populations (solid and dashed blue) under disruptive selection. Results shown for the full trait distribution model (FD model, A, D and G), the beta
distribution based aggregate model (BAmodel, B, E and H) and the normal distribution based aggregate model (NA model, C, F and I). The dashed-dotted red lines in
(D)–(I) indicate the ecological feasible minima and maxima of the mean and variance. We used the following parameter values: =r 2, =κ 10, =a 2max ,

=a 0min , =h 0.5, =w 0.75, =s 8, =I 0.0001, =d 0.2, =ε 0.3, =σ 0.2.
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far simpler than the BAmodel and so it should be both computationally faster to calculate, and easier to work with analytically. However, the computation
times depend not only on the complexity of the moment-closure terms themselves, but also on the stiffness of the resulting equations that strongly depends
on the derivatives of the fitness landscape, and this favors in general the beta distribution when the trait range is finite. Furthermore, reliable trait-based
aggregate models should not only provide shorter simulation times, but also be easier to fit to data (cf. Fig. 2).

Appendix C. Sensitivity analysis II – changes in parameter values

To test the robustness of our results with respect to parameter changes we conducted numerical simulations with different carrying capacities
∈κ( {10 , 10 , ...,10 })0.7 0.71 1.3 and minimum attack rates ∈ − − −a( {2 , 2 , ...,2 })min

1 1.1 3 , thereby simulating changes in the bottom-up regulation and top-
down control of the prey community under fluctuating selection. In addition, we tested for a potential dependency of the biomass and trait dynamics
on immigration by running further simulations of the different models for very different immigration rates ∈ − − −I( {10 , 10 , ...,10 })2 2.1 6 . All other
parameter values were the same as before (see Table 1). For a few simulations, we had to increase the precision of the solver reducing the relative
and absolute tolerances, and maximum step size (cf. Figs. C2 and C3, grey shaded areas).

The corresponding results show that the temporal mean and variance of the biomass and trait dynamics are very similar across the range of
parameter values evaluated for the three different parameters (Figs. C1–C3). Furthermore, the exact shape of the trait and biomass dynamics of the
beta distribution-based aggregate (BA) and full trait distribution (FD) models also agreed very well for most of the three parameter ranges con-
sidered, i.e. for − ≥ ≥ −log a1.3 ( ) 2.7min2 , for ≥ ≥20 κ 8 and for − ≥ ≥ −log I2 ( ) 5.210 (for a representative example see Fig. 4). Hence, the general
results described in the main text are fairly robust with respect to parameter changes. However, as with the results of the normal distribution-based
aggregate (NA) model for the entire ranges of the three parameters, the biomass and trait dynamics of the BA model were very different from the

Fig. C1. Temporal mean (solid line)± standard deviation (dashed line) of the total biomass (A–C), mean trait (D–F) and trait variance (G–I) of the prey community in
dependence of the minimum attack rate amin for the FD model (A, D, G), BA model (B, E, H) and NA model (C, F, I) under fluctuating selection. The dashed-dotted red
lines in (D)–(I) indicate the ecologically feasible minima and maxima of the mean and variance. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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ones of the FD model in case of very low immigration rates and rather low carrying capacities. The former result implies that a small amount of
immigration and thus standing trait variation is necessary to ensure ongoing oscillations in the biomass and trait values of the BA model and thus a
good match with the FD model. This happens because the second order correction of dx dt/ is not strong enough to prevent x from becoming stuck at
a local fitness maximum when immigration, and thus standing trait variation, as well as the third central moment are too low. In addition, reducing
the carrying capacity to rather low values strongly stabilized the predator-prey biomass dynamics (Fig. C2). As a result, changes in the fitness
landscape were less pronounced so that it became more likely for x to get stuck at a persistent local fitness maximum, despite the second order
correction. Based on the previous results (Fig. 5), we can expect that the NA model comprises alternative stable states throughout the ranges of the
different parameters. In addition, because the food-web structure is symmetric, we also expect that the BA model will exhibit an alternative state for
lower values of the carrying capacity and low values of the immigration rate.

The numerical integration of the BA model was quite demanding or even not feasible in small regions of the parameter space of κ and I (Figs. C2
and C3; grey shaded areas). A possible explanation is that the assumed shape of a trait distribution generally imposes some constraints on the
conditions (including initial conditions and parameters) under which a corresponding aggregate model can provide an adequate representation of
the biomass and trait dynamics. For example, in the BA model, the shape of the trait distribution of the immigrating community is assumed to follow
a uniform distribution whereas the one of the resident community is assumed to follow a beta distribution. However, as is also the case with the
normal distribution, the sum of a beta and a uniform distribution does not necessarily have to be beta-distributed. In such a case, the relationships
between the lower and higher moments cannot be adequately described anymore by the moment closure equations of the beta distribution. Hence,
the beta distribution-based moment closure may interfere with the mechanism assumed to maintain the trait variance. As a potential result, the BA
model may not have a suitable solution, or numerical integration may get very laborious due to stiffness.

Fig. C2. As Fig. C1 but in dependence of the carrying capacity κ. Note that it was quite demanding < <(7 κ 8) or even impossible ( ≈κ 7.24 and ≈κ 7.59) to
solve the BA model numerically in a small region of the parameter space (indicated by the grey shaded area). Furthermore, the strong deviations in the general
patterns of the NA model between ≈κ 6.3 and ≈κ 7.1 and of the BA model between ≈κ 5 and ≈κ 6.3 indicate the existence of alternative states as shown in
Fig. 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Appendix D. Skewness restricts mean trait values to the ecologically feasible range

In contrast to the NA model, the mean trait value x( ) of the BA model always stayed within its ecologically feasible range because the beta
distribution is intrinsically bounded. Here we show that this feature may generally arise from a strong increase in skewness S( ) when x approaches
one of the extremes. To focus on the effect of changes in S alone on the biomass and trait dynamics, we derive here an aggregate model based on the
assumption that the shape of the trait distribution follows a special case of the Johnson SB distribution (Johnson, 1949) and, thus, becomes skewed
when x approaches one of the extremes (for details see below). Nevertheless, the initial approximations made in the derivation ensure that no other
terms arise that may reflect accompanying changes in the kurtosis K( ) of the trait distribution. Hence, any effect that arises has to be attributed to S
alone. In accordance with the analysis performed for the model comparison presented in the main text, we conducted numerical simulations of our
Johnson SB distribution-based aggregate model (JAmodel) under different selection regimes. All corresponding simulations lasted for 104 time units.

Overall, the simulation results of the JA model were very similar to the ones of the NA model (compare Fig. D1 to Figs. 3, 5 and 7 of the main
text). However, the mean trait value x( ) of the JA model never exceeded its ecologically feasible range, which contrasts with the results of the NA
model. This feature was independent of the selection regime imposed (compare Fig. D1 to Figs. 5 and 7 of the main text). This is explained by the
strong decline of ν due to increasingly large absolute values of S when x approaches one of the extremes, quickly slowing down dx dt/ . Hence, an
increase in S| | limits the changes in x indirectly via changes in ν. This feedback between dx dt/ and dν dt/ suggests that the skewness and thus
asymmetry of a trait distribution is very important for preventing the emergence of unrealistic values of the aggregate properties. We acknowledge
that, in addition to the indirect effect of S, x may also be more directly limited in the BA model via the second term of Eq. (13). For example, in the
simplest case of disruptive selection, the fitness gradient drives x towards one of the extreme values (cf. Fig. E1B, E). However, since the second
derivative is positive, the sign and value of S operate in the opposite direction to the fitness gradient (cf. Fig. E1E, H) slowing down dx dt/ and likely
preventing x from overcoming its limits. Neither mechanism described can act in the NA model to restrict mean trait values to their ecologically

Fig. C3. As Fig. C1 but in dependence of the immigration rate I. Note that it was quite demanding < <− −I(10 10 )5.9 5.6 or even impossible = −I( 10 )5.6 to solve the
BAmodel numerically in a small region of the parameter space (indicated by the grey shaded area). Furthermore, the strong deviation in the general pattern of the BA
model between ≈ −I 10 5.9 and ≈ −I 10 6 indicates the emergence of alternative states as shown for the results of the NA model in Fig. 5. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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feasible ranges.

Derivation of the Johnson SB distribution-based aggregate (JA) model

In contrast to Appendix A we now assume that the trait x is a function of another trait y, whose values are assumed to be normally distributed.
Following Abrams (1999) we used a sigmoidal function to describe the transformation of the trait y (defined on a continuous infinite range) to the
trait x (defined on a continuous finite range between zero and one):
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Hence, the distribution of x is a special case of the Johnson SB distribution, i.e., a logit-normal distribution with parameters
= = =γ δ μ y0, 1, and =σ νy (Johnson, 1949). Although the Johnson SB distribution may in principle also be bimodal, our derivation below

does not give rise to terms that may reflect excess kurtosis and thus bimodal shape properties. When conducting a moment closure based on the
assumption of normally distributed trait values y, i.e. ∼y N y ν( , ),y a second-order approximation of the equation describing the temporal dynamics
of y is given by (see Eq. (16) of the methods section):
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where F is the per capita net growth rate (fitness) of the species as a function of y. The mean trait x is given by:

∫=x N y x y dy( ) ( ) (D3)

Fig. D1. Temporal mean (solid line)± standard deviation (dashed line) of the total biomass (A–C), mean trait (D–F) and trait variance (G–I) of the prey community
in dependence of the initial mean trait value for the JAmodel under stabilizing (A, D, G), fluctuating (B, E, H) and disruptive (C, F, I) selection. The dashed-dotted red
lines in (D)–(I) indicate the ecological feasible minima and maxima of the mean and variance. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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A Taylor expansion of x y( ) around y yields:
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For simplicity, we will use a first order approximation of x :

= ⎛

⎝
⎜ + ∂

∂
+ ∂

∂
+ ∂

∂
+ …⎞

⎠
⎟ ≈=

= = =
x x y

ν x y
y

M x y
y

M x y
y

x y( )|
2

( )
6

( )
24

( ) ( )y y
y

y y y y y y

2

2
3

3

3
4

4

4
(D5)

Applying twice the chain rule, the temporal dynamics of x is described by:
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Based on Eq. (D5), the derivative of x with respect to y is given by:
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Inserting Eq. (D7) into Eq. (D6) yields:
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In analogy to Eq. (16) (or Eq. (D2)), the product in front of the first derivative of Eq. (D8) is akin to the variance of the trait x . Hence, defining
∶ = −ν ν x x( (1 ))x y

2, Eq. (D8) becomes:
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Proceeding as before, a second-order approximation of the equation describing the temporal dynamics of νy is given by (see Eq. (17) of the
methods section):
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Applying first the chain rule and then using Eqs. (D9) and (D10), the equation describing the temporal dynamics of νx is given by:
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Given that = − −ν ν x x( (1 ))y x
2we can express ∂ ∂ν x/x as:
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Inserting Eq. (D12), = −∂
∂ x x( (1 ))ν

ν
2x

y , and = − −ν ν x x( (1 ))y x
2 2 4 into Eq. (D11) yields:
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Rewriting ∂
∂ =

F
y y y

2
2 leads to:
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Using Eq. (D7), the second derivative of x with respect to y is given by:
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Inserting Eq. (D7) and Eq. (D15) into Eq. (D14) yields:
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Now, substituting Eq. (D16) into Eq. (D13) and simplifying the resulting expression gives:
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In line with Eq. (14) of the methods section, we can rewrite Eq. (D17) as:
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with ∶ = −
−S x ν

x x
3(1 2 )

(1 )
x representing the skewness of the trait distribution. Notice that S is symmetrical around 0.5 and tends to (positive or negative)

infinity when x approaches the extremes of the trait range, 0 and 1. Finally, we add the immigration terms of Eqs. (13) and (14) to Eqs. (D9) and
(D18) leading to the following approximated equations of an aggregate model based on the assumption that x follows a unimodal but skewed trait
distribution:
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This Johnson SB distribution-based aggregate model (JA model) underlies the results presented in Fig. D1.

Appendix E. Skewness and kurtosis jointly promote the maintenance of functional diversity

We found strong negative correlations between the skewness S( ) and the mean x( ), and between the kurtosis K( ) and the variance ν( ) of the
observed phytoplankton size distributions that are well captured by the beta distribution (Fig. 2). Here, we show that these relationships may provide
a general and intrinsic mechanism to promote the maintenance of functional diversity, i.e. strictly positive values of the trait variance, in trait-based
aggregate models, even in the absence of frequency-dependent selection. In order to do so, we analyzed the stability of potential fixed points of the
approximated aggregate model equations under simplifying assumptions for two different moment closure approaches, and run additional simu-
lations of an extended version of the BA model.

E.1. Convergent stable fitness minima under frequency-independent selection

According to Appendix A, the equations describing the temporal dynamics of x and ν of a full trait distribution (FD) model, which does not
contain immigration, are approximated up to the second order as:
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For convenience, we will first neglect frequency-dependent natural selection, which allows us to explore a novel mechanism that can stabilize a
fixed point of the mean trait value at a fitness minimum. Hence, we suppose the species’ fitness function F to depend only on the total biomass RT and
its individual trait value x but not on the mean and variance of the entire (frequency) trait distribution (cf. Abrams et al., 1993b). However, our
results may also apply to some (special) cases of frequency-dependent selection as discussed in more detail below. Assuming a normal trait dis-
tribution enables a moment closure of the aggregate model based on = =−S M ν 03

3
2 and = =−K M ν 34

2 and thus allows a simplification of Eqs. (E1)
and (E2) to:

= ∂
∂ =

dx
dt

ν F x
x
( )

x x (E3)

= ∂
∂ =

dν
dt

ν F x
x
( )

x x

2
2

2 (E4)

Hence, the mean trait x changes in the direction of the local fitness gradient and thus moves towards a local maximum of the fitness landscape
F x( ), where it remains constant once reaches it, because the local fitness gradient ∂ ∂ =F x/ |x x is zero at this point (Fig. E1). At or near a local fitness
maximum, the second derivative of the fitness landscape evaluated at the mean trait value ∂ ∂ =F x/ |x x

2 2 attains a negative value, so that the trait
variance ν vanishes, and the system loses its adaptability, since x can no longer change. This demonstrates that the equations of a NA model
inherently promote the loss of functional diversity, also under scenarios of disruptive selection (Fig. E1A, D, G), so that it has to be maintained by
other ecological processes such as immigration, mutation or more complex trade-off structures (Tirok et al., 2011; Merico et al., 2014; Coutinho
et al., 2016). In contrast, as shown below, the relationships between lower and higher central moments entailed in the beta distribution-based
moment closure equations offer an alternative explanation and mechanism for the maintenance of functional diversity and thus for keeping ν above
zero.

In order to achieve a basic understanding of how the different functional terms of Eqs. (E1) and (E2) may interact to shape the overall temporal
dynamics of x and ν, we first analyze the local stability of a potential fixed point x * of Eq. (E1), i.e. we consider a situation where ==dx dt/ | 0x x * .
For simplicity, we assume that the skewness depends only on the mean trait value, S x( ), while the kurtosis depends only on the trait variance, K ν( ).
This seems to be reasonable given that x explains much of the variation in S and ν explains much of the variation in K both for natural and simulated
trait distributions (Fig. 2). We also assume that the trait distribution is symmetric at the equilibrium, i.e. =S x( ) 0* , which seems to be valid under
rather balanced selection regimes where the fitness landscape is also symmetric around x * (Fig. E1). Under these simplifying conditions, the full

T. Klauschies et al. Ecological Modelling 381 (2018) 46–77

71



Jacobian of the two-dimensional system of Eqs. (E1) and (E2) at the fixed point with positive ν* becomes diagonal, allowing us to perform the
analysis of each equation separately. Hence, in this case, a potential fixed point x * of Eq. (E1) satisfies the following condition: ∂ ∂ ==F x/ | 0x x * .
Therefore, x * is situated either at a local fitness maximum or at a local fitness minimum of the corresponding fitness landscape, considering that
∂ ∂ ≠=F x/ | 0x x

2 2
* . We disregard the possibility of an inflection point, which would require very special assumptions about the fitness function F . A

negative value of the derivative of Eq. (E1) with respect to x evaluated at x * implies its local stability:
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Since the trait distribution is assumed to be symmetric at the equilibrium, i.e. =S x( ) 0* , this simplifies to:
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In line with the general properties of Eq. (18) and the observed negative correlation between S and x of the phytoplankton size distributions
(Fig. 2), we expect that ∂ ∂ <=S x/ | 0x x * . Given that ∂ ∂ =F x/ |x x

2 2
* is negative at a fitness maximum (cf. Fig. E1), x * will be stable when

∂ ∂ ⋅ <=S x ν/ 2x x
1
2* and unstable otherwise. In contrast, ∂ ∂ =F x/ |x x

2 2
* is positive at a fitness minimum (cf. Fig. E1) so x * will be stable if

< ∂ ∂ ⋅=S x ν2 / x x
1
2* and unstable otherwise. Remarkably, this means that if a small perturbation of x from its equilibrium x * leads to a substantial

increase of S of the trait distribution, and ν is large enough, a fixed point at a fitness minimum will be stable. The local fitness landscape around the
fixed point x * can be approximated by a parabolic function, so a perturbation of x away from x * leads to asymmetric growth, skewing the trait
distribution. Moreover, since the fitness function decreases towards x * (Fig. E1E), S x( ) will have the opposite sign of −x x *, so ∂ ∂ =S x/ x x * will be
negative. This change in S increases with the degree of curvature of the local fitness landscape ∂ ∂ =F x/ |x x

2 2 . Hence, a fixed point at a fitness minimum
is likely to be stable when the local fitness landscape exhibits a pronounced valley (cf. Fig. E1). This contrasts with the results of a NA model (cf. Eqs.

Fig. E1. Sketch of three different fitness landscapes (A–C) imposing stabilizing (A) or disruptive selection (B and C) and their corresponding first (D–F) and second
(G–I) derivatives. The red dotted-dashed lines separate positive and negative values from each other. The grey dots indicate potential fixed points of the mean trait
value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(E3) and (E4)), where the fixed point x * of dx dt/ at a fitness maximum is always stable and at a fitness minimum always unstable.
With this insight at hand, we will now consider Eq. (E2) describing the temporal development of the trait variance ν, i.e. functional diversity, in

response to selection. Since the mean trait value =x x * is at a fixed point at a fitness minimum or maximum, the local fitness gradient ∂ ∂ =F x x( )/ |x x *

equals zero. Hence, Eq. (E2) simplifies to:

= − ∂
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x

( )
2
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x x

2 2 2

2 (E7)

This equation has (at most) two fixed points (once again disregarding an inflection point of the fitness function), an ecologically trivial one, =ν* 0,
and a nontrivial one that is implicitly defined by the equation =K ν( *) 1. The local stability of the latter can be determined from the sign of the
following equation:
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Hence, setting =K ν( *) 1 into Eq. (E8) leads to:
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In line with the general properties of Eq. (19) and the observed negative correlation between K and ν of the phytoplankton size distributions
(Fig. 2), we expect that ∂ ∂ <=K ν/ 0ν ν* . Hence, the ecologically non-trivial fixed point ν* is stable when the fixed point x * is at a fitness minimum
and unstable when the fixed point x * is at a fitness maximum.

Taking the two results of the preceding linear stability analyses of x and ν together, we found that the negative correlations between lower and
higher central moments may jointly promote the maintenance of functional diversity, i.e. >ν* 0, by keeping x at a fitness minimum, where
∂ ∂ >=F x/ | 0x x

2 2 . Again, this is in direct contradiction to the conclusions of a NA model, where the stability condition of a fixed point x * of dx dt/ at a
fitness maximum (cf. Eqs. (E3) and (E4)) implies ν equals zero, losing all functional diversity. In addition, if the initial value of x is a fixed point x * of
dx dt/ at a fitness minimum of the NA model, ν will increase without bound instead of vanishing, provided there is no feedback between the total
biomass (influenced by ∂ ∂ =F x· / |ν

x x2
2 2 ) and F x( ) itself. In that case, we would find ourselves with the opposite issue of exploding trait variances. This

feature is known as runaway evolution of traits (cf. Abrams and Matsuda, 1997). Furthermore, this reasoning implies that any moment closure
approach for trait-based aggregate models defined by Eqs. (E1) and (E2) based on the assumption of a trait distribution that exhibits constant values
of S and K independent of x and ν will not be able to overcome the same pitfall of NA models: loss of functional diversity over time without
frequency-dependent selection. However, as discussed below in more detail, frequency-dependent selection may also stabilize a fitness minimum
within a NA model (Abrams et al., 1993b).

In line with the observed correlations between lower and higher central moments (Fig. 2), one of the simplest moment closures that can be
conducted for an aggregate model defined by Eqs. (E1) and (E2), while adhering to the stability conditions outlined above, is given by assuming S
and ln K( ) to be expressed as linear functions of x and ln ν( ), respectively:
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3
2 3
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2 (E10)
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4
2

4
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with >a a, 0K S and <b b, 0K S (cf. Gaedke and Klauschies, 2017). This enables a data-based moment closure of trait-based aggregate models that are
defined by Eqs. (E1) and (E2), where the intercept a( ) and slope b( ) parameters of Eqs (E10) and (E11) are estimated from actual empirical data (see
Fig. 2).

Finally, we support our analytical results by showing numerical simulations of an extended BA model that does not need immigration or any
other mechanism to maintain v, i.e. >ν* 0. When considering the central moments up to the fourth rather than the second order, the aggregate
model with the highest accuracy with respect to the resolution of the entire fitness landscape is given by the following set of equations (cf. Appendix
A):
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In line with Eq. (20), the fourth-order approximation of the per-capita net-growth rate F is given by:
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In accordance with the simulations presented in the results section, we run numerical simulations of this extended BA model by keeping all
parameters the same except for the immigration rate I, which was set to zero. Depending on the initial conditions, our model predicts either
oscillations or stasis in the predator and prey biomasses (Fig. E2). In the first case, the mean of the trait distribution approached a stable equilibrium
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at an intermediate value that corresponded to a fitness minimum, whereas the value of the trait variance was at its maximum, indicating a bimodal
distribution. In the second case, on the other hand, the mean trait value approached one of the two extremes that corresponded to a fitness maximum
while the trait variance collapsed towards zero. These results illustrate how the beta distribution approach can keep high levels of standing trait
variation in trait-based aggregate models without additional mechanisms. When adding immigration to the extended version of the BA model, the
resulting biomass and trait dynamics no longer depended on the initial conditions and showed very high levels of standing trait variation (Fig. E3). In
contrast to the results shown in Fig. E2, the value of ν was not constant and changed over time. This pattern arose from an interplay between the
predator-prey oscillations and the density-dependent impact of immigration. Interestingly, the immigration term in dx dt/ ensured global stability of
the fixed point =x 0.5* at a fitness minimum and thus overall maintenance of ν. However, at the same time, the immigration term in dν dt/ promoted
temporal reductions of ν because the trait variance of the immigrating community is smaller than the trait variance of the resident community at
equilibrium. Despite the good match between the trait dynamics, this model overestimated the grazing rate of the predators on the prey community,
which promoted ongoing predator-prey cycles instead of stasis (see Fig. 6). Furthermore, this model was unable to reproduce the biomass and trait
dynamics of the prey and predator community under fluctuating selection as displayed in Fig. 4. This indicates that trait-based aggregate models are
quite sensitive to the choice of the moment closure approach and mechanism used to maintain ν. Hence, besides showing more thoroughly the actual
potential of a beta distribution-based moment closure approach for trait-based aggregate models, these results also point towards potential lim-
itations that may arise when accounting for higher derivatives of the fitness function, i.e. higher order Taylor expansions.

E.2. Convergent stable fitness minima under frequency-dependent selection

The preceding discussion assumed that natural selection is independent of x and ν of the trait distribution. Hence, we neglected the possibility for

Fig. E2. Biomass (A–C), mean trait (D–F) and trait variance (G–I) dynamics of the prey community (green) and the 3 predator species that are specialized on low
(black), intermediate (dark blue) and high (light blue) trait values of the prey community under disruptive selection for the extended beta distribution-based
aggregate model without immigration, i.e. I=0. The dashed-dotted red lines in (D)–(I) indicate the ecologically feasible minima and maxima of the mean and
variance. Initial values of the mean trait and trait variance of the prey community were set to 0.45 and 0.01 for (A, D, G), 0.45 and 0.001 for (B, E, H) and 0.55 and
0.001 for (C, F, I). Note a value of ≈ν 0 implies that the prey community is hardly adaptive anymore.
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a convergent stable fitness minimum that may generally arise under frequency-dependent selection, in which the fitness and thus, the invasion
success of a mutant strongly depend on the phenotype of the (monomorphic) resident community (Christiansen, 1991; Abrams et al., 1993b; Rueffler
et al., 2006). In general, this frequency-dependent mechanism can stabilize a fitness minimum also in a NA model, which assumes that the trait
values are normally distributed, and exhibit a small variance. However, we are going to show that such stable fitness minima do not exist in our NA
model with a single predator. Hence, this mechanism cannot have stabilized the fitness minimum in our FDmodel under disruptive selection (Fig. 6).
Instead, the fitness minimum in our FD model was likely stable due to the mechanism discussed in the previous section.

When selection is frequency-dependent, the species’ fitness function F depends not only on the total biomass RT and its individual trait value x
but also on the mean x and variance ν of the entire trait distribution (cf. Eq. (20)). Hence, when considering a NA model under frequency-dependent
selection, the linear stability condition for x at its equilibrium x * is given more generally by the sign of the following equation:
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Hence, the fixed point x * is locally stable if ∂ ∂ + ∂ ∂ ∂ <= = = =F x F x x/ | / | 0x x x x x x
2 2

*
2

* and x * is unstable otherwise (Abrams et al., 1993b). In contrast
to frequency-independent selection, this can also happen under frequency-dependent selection when x * is located at a fitness minimum. In such a
case, selection will drive x first towards a local fitness maximum by following the fitness gradient, which then turns into a local fitness minimum
when x reaches the corresponding extreme trait value of the fitness landscape, at which point selection becomes disruptive (Rueffler et al., 2006). As
a potential result, ν may exhibit stable growth in the absence of any other negative feedback. However, frequency-dependent selection does not
ensure that x at a fitness minimum becomes convergent stable (Abrams et al., 1993b). In fact, the likelihood of fitness maxima to be unstable seems

Fig. E3. Biomass (A–C), mean trait (D–F) and trait variance (G–I) dynamics of the prey community (green) and the 3 predator species that are specialized on low
(black), intermediate (dark blue) and high (light blue) trait values of the prey community under disruptive selection for the extended beta distribution-based
aggregate model with immigration, i.e. I= 0.0001. The dashed-dotted red lines in (D)–(I) indicate the ecologically feasible minima and maxima of the mean and
variance. Initial values of the mean trait and trait variance of the prey community were set to 0.45 and 0.01 for (A, D, G), 0.45 and 0.001 for (B, E, H) and 0.55 and
0.001 for (C, F, I).
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to be much higher than the likelihood of fitness minima to be stable (Abrams et al., 1993b). Furthermore, in line with the stability conditions for x *

under frequency-independent selection, ∂ ∂ ∂ = =F x x/ |x x x
2

* equals zero also for some cases of frequency-dependent selection. For example, consider the
predator-prey model used in the main text (Eqs. (1)–(2)) with only a single predator in place (cf. Fig. 6). In this case, we can express the first
derivative of the fitness function of the prey with respect to x (Eq. (20)) as the product of a function f x( )1 that only depends on x and a function
f x ν( , )2 that only depends on x and v of the trait distribution, i.e. ∂ ∂ =F x x ν x f x f x ν( , , )/ ( )· ( , )1 2 . Given that the denominator of the functional
response is positive, i.e. >f x ν( , ) 02 for all x and sufficiently small ν, the second derivative ∂ ∂ ∂ =F x x/ |x x

2 equals zero when ∂ ∂ = == =F x f x/ ( ) 0x x x x1
and, thus, when x is located at a fitness maximum or minimum. For the same reason, ∂ ∂ ∂ ==F x ν/ | 0x x

2 at such an equilibrium, and so the off-diagonal
terms of the Jacobian matrix of the system given by Eqs. (E3)–(E4) cancel, allowing us to analyze each equation separately once again. Hence, under
such circumstances, a convergent stable fitness minimum does not exist in our NA model even with frequency-dependent selection.

In contrast to frequency-independent selection, a potential equilibrium of v in the NA model under frequency-dependent selection is given either

by =ν* 0 or by =∂
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0F x x ν
x x x ν ν
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,

2
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. The first case is the trivial one noted beforehand. However, also the realism of the second, non-trivial equi-

librium of ν has to be questioned because it implies that x * has to be located at an inflection point. Furthermore, the stability of the non-trivial ν* is
given by the sign of the following equation:
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Since ≥ν* 0, the stability depends only on the sign of the third derivative. Although it is not immediately clear which ecological scenarios may
correspond to this stability condition, the third derivative in Eq. (E17) is zero when considering once again our predator-prey model with a single
predator in place, following the reasoning outlined above for Eq. (E16). This suggests that frequency-dependent selection is not able to promote non-
zero variances at equilibrium in NA-models. However, in general, when considering BA models, the stability condition based on the correlations
between lower and higher central moments (Eqs. (E6) and (E9)) may interact in several ways with the stability condition based on frequency-
dependence (Eqs. (E16) and (E17)), jointly determining the overall stability of fitness minima and maxima.
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