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Abstract
We propose a stage-structured integrodifference

model for blowflies’ growth and dispersion taking into
account the density dependence of fertility and survival
rates and the non-overlap of generations. We assume
a discrete-time, stage-structured, model. The spatial
dynamics is introduced by means of a redistribution
kernel. We treat one and two dimensional cases, the
latter on the semi-plane, with a reflexive boundary. We
analytically show that the upper bound for the inva-
sion front speed is the same as in the one-dimensional
case. Using laboratory data for fertility and survival
parameters and dispersal data of a single generation
from a capture-recapture experiment in South Africa,
we obtain an estimate for the velocity of invasion of
blowflies of the species Chrysomya albiceps. This model
predicts a speed of invasion which was compared to
actual observational data for the invasion of the focal
species in the Neotropics. Good agreement was found
between model and observations.
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Introduction

Invasive species are thought to be one of the greatest
causes of loss of biodiversity in the world (Williamson
1999). Many different aspects of invasions have been
object of attention in the last decades. Among those,
the spatial dynamics of invasions is one aspect that has
attracted a great amount of interest (Shigesada and
Kawasaki 1997). The mathematical theory to under-
stand and predict how invasions take place has been
being studied to a great extent, and features a variety
of mathematical formulations, from reaction–diffusion
to integrodifference equation models. Although the
assumptions behind each treatment may be different,
there are some general results, such as that – in the
absence of Allee effects – the spread velocity depends
only on dispersal capacity and net reproductive rate at
low densities (Kot et al 1996).

Comparison of models with data is in general
harmed by the lack of observations about the main pa-
rameters present in the models. Although growth ratios
can in many cases be inferred from laboratory experi-
ments, the dispersal ability of a given species is difficult
to determine. Frequently, models are adjusted to data
by fitting the parameters related to dispersal. How-
ever, this weakens the model’s validity and precludes
testing the model. In this paper we overcome these
difficulties in a specific case: we give a model where
the parameters determining the speed of invasion are
completely fixed by either laboratory experiments or

Author's personal copy



364 Theor Ecol (2012) 5:363–371

by field observations. With the velocity determined
by the parametrized model, we test the predictions in
a geographically distinct region, relying on historical
data.

Around 1975, Chrysomya albiceps (Calliphoridae),
a blowfly species, was brought from Africa to South
America by Angolan refugees during the Civil War
(Guimarães et al 1978). Although there are records of
previous introductions (Baumgartner and Greenberg
1984), only on that occasion the species was established.
Afterwards, C. albiceps invaded South America trop-
ical regions in the following decade, displacing other
native blowfly species.

Blowflies, as many insects, are stage-structured
species. The larval phase accounts for the population
regulation, as the population level is essentially deter-
mined by the resource availability (in this case, carrion).
On the other hand, dispersal is related to the adult
stage.

In this paper, we propose a model incorporating
stage-structure and dispersal that is capable of predict-
ing the speed of invasion for blowflies of the C. albiceps
species using as input parameters fertility and survival
data, measured in laboratory, and one-generation dis-
persal data, assessed by means of capture-recapture
techniques in an experiment performed in the 80’s in
South Africa. This provides us with a definite speed that
is not fitted to the realized invasion, so we are able to
compare it to the actual speed of invasion observed in
South America.

Although the data used in this case mixes laboratory
experiments with field data of different geographical lo-
cations, the results about the invasion speed are close to
the observed velocity, a point which renews hope that
even simple models, taking care of biological particu-
lars and noisy data, can provide meaningful information
about the dynamics of invasions.

Finally, we point out that the model presented be-
low also displays an interesting mathematical structure,
which has already been seen in previous works, (Kot
1992; Andersen 1991). In fact, as the dynamical stage
of the model shows a bifurcation route to chaos, when
space is incorporated the resulting model reveals the
formation of spatial non-stationary structures.

The model

C. albiceps life cycle consists of egg-larvae-adult stages.
The female adults deposit large masses of eggs onto
carrion or feces, that are consumed by the larvae after
eclosion, which go through three instars before emerg-

ing as adults, which are able to fly and search for new
carcasses.

These blowflies are known to display intraguild pre-
dation as well as cannibalism in the larval stage (Ullyett
1950), which contributes to a strong density depen-
dence during the larval period with overcompensation
(Godoy et al 2001), that is, declining recruitment with
increasing density of larvae, affecting both survival and
fertility rates.

Successful invasive species are expected to be regu-
lated by bottom-up processes: the release from preda-
tory pressure in a given region – taking the species out
of a self-regulated community – makes the population
level dependent on the available resources (Sakai et al
2001). This fact simplifies the mathematical modeling of
invasions, as relevant results can be obtained by means
of single-species models.

The local dynamics

Let us begin by building our model presenting the local
dynamics equations. We consider a simple, two-stage
difference model, following the results of Prout (Prout
and McChesney 1985). It accounts for growth and com-
petition for resources in the larval stage, without any
spatial dynamics yet:

ut = S∗vt e−svt , (1)

vt+T = 1

2
F∗ut e− fvt . (2)

In the above equations u represents adult female popu-
lation density and v the larval density. S∗ and F∗ are to
be interpreted as maximum survival and fertility rates,
while s and f are related to density effects on those
rates. Also, each time step corresponds to a complete
generation time, the egg-to-egg interval T.

C. albiceps is a semelparous species, that is, it
oviposits only once. Also, it feeds on ephemeral re-
sources, so that competition tends to be important
only between individuals of the same generation. This
indicates that the assumption of discrete time dynamics
is a sensible choice.

The spatial dynamics

We proceed by introducing spatial dynamics into the
model through a redistribution kernel K(x, x′; y, y′). In
the case at hand, only the adult population is responsi-
ble for the dispersal, since the spread of larvae occurs at
a much smaller scale. The redistribution kernel should
thus describe the contribution of adults emerging at
(x′, y′) at time t to the larvae at (x, y) at the next
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next generation (at time t + T), through oviposition.
Adopting a discrete-time, continuous space description,
the equations will read (Kot 1992):

ut(x, y) = S∗vt(x, y) e−svt(x,y), (3)

vt+T(x, y) = 1

2
F∗

∫∫
ut(x′, y′)

× e− fvt(x′,y′)K(x, x′; y, y′)dx′dy′ , (4)

where the parameters are the same as in Eqs. 1 and 2.

Spatial homogeneity

In the above equation we have assumed that the para-
meters F∗, S∗, s and f do not depend on the spatial
location. This cannot be true on every spatial scale
as, for instance, f and s are related to the carrying
capacities which, in turn, are related to the availability
of resources. We certainly have fragmentation at small
scale, since carcasses are distributed heterogeneously
in space, but the invasion’s spatial scale is much larger
than that. In view of that, we will treat space as ho-
mogeneous, taking all parameters as averaged, which
corresponds to the homogenization limit (Shigesada
et al 1986). Accordingly, variability in small spatial scale
is not to be predicted by our model.

Spatial heterogeneity on a larger scale may still be
of relevance, but for that the problem would have to
satisfy two conditions (Pachepsky and Levine 2011):
(a) discrete number of individuals, that is, insufficient
size of propagules, such that it is necessary that the pop-
ulation build up in order to be able to go forward; and
(b) completely inhospitable barriers between patches.
None of them are verified, since (a) a single – female
– blowfly may propagate the invasion, having a very
high recruitment, such that the number of propagules
is always as high as it can be; and (b) blowflies are
generalists, feeding on all kinds of decaying organic
material, from feces to carcasses, so that they are able
to survive in most places (Richards et al 2009).

Ricker-like model

The system of equations can be rewritten as a single
equation for larvae only, where adults are not explicitly
modeled, but may be seem as a means of propagation
from one generation to the next:

vt+T(x, y) = 1

2
F∗S∗

∫∫
vt(x′, y′)

× e−( f+s)vt(x′,y′)K(x, x′; y, y′)dx′dy′ . (5)

It is clear that this model is of the Ricker form
(Ricker 1954), so its local dynamics, which is well
known (May and Oster 1976), exhibits complex be-
havior for high values of the product S∗F∗, presenting
a period-doubling bifurcations route to chaos as the
product of those parameters increases.

The redistribution kernel

In order to progress, an assumption has to be made
about the form of the redistribution kernel. We will
consider, in what follows, two cases. First, we will look
to the one-dimensional case. This will allow us to get a
simplified view of the dynamics and use previous results
to calculate the speed of the invasion front. Next, we
will look to the two-dimensional case on the semi-
plane, with zero-flux conditions on the border. This
represents additional biological realism, as the actual
invasion process for C.albiceps in the Neotropics was
initiated at a coastal zone and directed inland.

For the one-dimensional case, we make the sim-
plifying assumption that the redistribution kernel is
Gaussian. Even though it is usually argued that real
populations tend to show leptokurtic kernels (Okubo
and Levin 1989; Neubert et al 1995; Kot et al 1996), we
seek to keep behavior-related assumptions to a mini-
mum, though keeping in mind that we may be under-
estimating dispersal. Such choice yields the following
model:

vt+T(x) = F∗S∗

2
√

πσ

∫ +∞

−∞
vt(x′)

× e−(s+ f )vt(x′) e−(x−x′)2/σ 2
dx′ , (6)

where now we have another parameter, σ , which mea-
sures the typical distance an adult individual roams
before ovipositing. On this interpretation, we neglect
the effect of another female oviposition besides the
first.

For the two-dimensional case, we assume inde-
pendence of the x and y directions. This allows
us to consider a product kernel, K(x, x′; y, y′) =
Kx(x, x′)Ky(y, y′). Considering the semi-plane defined
by x ≥ 0, the kernel reads:

Ky(y, y′) = 1

σ
√

π
e− (y−y′)2

σ2 (7)

Kx(x, x′) =

⎧⎪⎨
⎪⎩

1

σ
√

π

[
e− (x−x′)2

σ2 + e− (x+x′)2
σ2

]
if x′ ≥ 0 ,

0, otherwise.
(8)
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Ky(y, y′) is the Gaussian kernel in the unbounded di-
rection. The expression for Kx(x, x′) can be derived
under the same assumptions used to derive a Gaussian
kernel, but with a reflexive boundary at x = 0. Indeed,
both expressions can be obtained from the assumption
that the underlying process is Markovian, with equal
probabilities in each direction (Chandrasekhar 1943).
We note furthermore that with this kernel, the integral
appearing in Eq. 5 is not a convolution anymore, as
Kx(x, x′) does not depend only on the difference x − x′.

Results

One-dimensional case

The model defined by the kernel given in Eq. 6 leads to
complex spatial and temporal dynamics for sufficiently
large F∗ and S∗ parameters as can be seen in Fig. 1.
This was to be expected, since the local dynamics
already showed such complex behavior (Kot 1992;
Andersen 1991). The population density oscillates ir-
regularly both in space – if we look at a “snapshot”
in time – and in time – given a fixed spatial location.
It is not, however, our intention to reassess the typi-
cal dynamics of the Prout model. Rather, we proceed
to consider the spatial effects that are connected to
observations.

Fig. 1 Population density evolution, with realistic parameters
for C. albiceps invasion: F∗S∗ = 130, s + f = 0.1 and σ = 10.8.
In the first plot we show the initial condition, a small, localized
population

We turn now to the calculation of the speed of
invasion. As in many models with the same ingredi-
ents, dispersal and nonlinearity, we have essentially
two solutions – one is the null solution, and the other
shows complex dynamics, (Kot 1992). Connecting both
of them, there is a wave front. After a short interval,
the speed of invasion converges to a constant, as can
be seen by numerically integrating the equations. We
point out that the spatial scale is fixed by the parameter
σ , so that the space units are fixed with respect to it,
and so it is expected that the invasion speed should be
proportional to σ , as it will indeed turn out.

The upper bound of the velocity, c, of the front of
invasion in terms of the model parameters was given by
Kot et al (1996):

c = σ

√
log

F∗S∗

2
(9)

For sake of completeness, in Fig. 2 we display also
how the maximum fertility and survival rates affect
invasion velocity.

It is worthy to emphasize that the front velocity
does not depend on the parameters f and s. These
parameters measure fertility and survival drop rates
when population density increases, that come into play
only at higher densities and do not interfere in the
velocity of invasion. We note, however, that it has been
argued recently that density dependence can play a role
in spread velocity (Pachepsky and Levine 2011) when
the landscape is fragmented and populations are dis-
crete, that is, when the approximation of continuously
varying, infinitesimal populations is not sensible.

Fig. 2 Analytical upper bound for the invasion speed as a func-
tion of the parameter’s product F∗S∗, for both one and two-
dimensional cases
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Two-dimensional case

The two-dimensional case has been treated numerically
and the solution is displayed in Fig. 3. The results have
been obtained using realistic parameters estimated in
the next section.

In Appendix B we show that, although theory in
general predicts that the upper bound for invasion
velocities is lower in two-dimensional domains than in
one-dimensional ones (Fort 2007), the Gaussian kernel
is a special case in which both velocities are the same.
We show that this happens in general when the kernel
is separable, id est when the probability of displacement
in each direction is independent of the displacement in
the other direction.

In the full nonlinear case, we show numerically that,
after a transient, the distance travelled per generation
along any ray with origin in (0,0), is constant. Therefore
the invasion speed is also constant, and indeed has
the same value as in the one-dimensional case. This
is in agreement with what the results of Appendix B
suggest.

The general aspect of the spatial configuration
of the solutions corresponds to non-stationary pat-
terns with a spatially complex dynamics, just as in
the one-dimensional case, Fig. 1. In the next sec-
tion we comment on the actual detectability of such
patterns.

Fig. 3 Solution of the two-dimensional model results, with
F∗S∗ = 130, s + f = 0.1 and σ = 8. We can see the front of in-
vasion expanding in one generation, as well as a pattern of peaks
and valleys in the region already occupied by the population.
At t = 0 the initial condition consists of a localized population
around the origin

Parameter estimates and comparison
with observations

In this section, we reuse data from the literature to
feed the model developed in the last section in order to
obtain a prediction of the velocity of invasion. In using
and analyzing that data, it is crucial to bear in mind that
predictability may be hindered by “founder effects”
(Melbourne and Hastings 2009), so that the variability
of the relevant life-history traits must be taken into
account. In that spirit, what we provide is a range of
values for the invasion speed.

Godoy et. al. (Godoy et al 2001) measured fertility
and survival data for C. albiceps, finding S∗ to be ap-
proximately 0.5 ± 0.1 and F∗ 260 ± 40 total eggs/female
in 10 days. They also validate the Ricker form of the
local population dynamics, although the parameters f
and s found are related to the amount of resources used
in their particular experiment.

To estimate σ , we use data from a capture-recapture
field experiment which was conducted in South Africa
in 1985 (Braack and Retief 1986). It consisted in
the release of 16,000 radioactively marked C. albiceps
blowflies in a certain point and the subsequent recap-
ture, after 5 to 7 days, in large traps spread throughout
the field at different distances from the release point.
We rework the published data taking into account the
local habitat preference as well as the sampling effort,
as detailed in the Appendix A. We then proceed to
calculate σ fitting the best Gaussian with a least squares
method, shown in Fig. 4, along with the histogram of
the data treated as described. The estimative is rough,
given the limitations of the measurement, but it is taken
on the field instead of in the lab, so the data is more
likely to reflect the characteristics of the in natura
population.

Figure 4 shows that σ is about 10.8 km, in the range
7 − 14 km. Using these value for σ along with the data
for F∗ and S∗, we find that the velocity per generation
is about 20 km/generation, with the range between 14
and 30 km/generation.

To calculate the actual velocity, we need to estimate
the generational time of the blowflies in the field. Lab-
oratory experiments show that time from hatching to
eclosion is highly dependent on temperature, ranging
from 10 to 30 days for temperatures between 17 and
25◦C (Al-Misned et al 2002; Richards et al 2008). Also,
from the field experiment performed by Braack in the
Kruger Park (RSA) (Braack and Retief 1986), which
presents temperatures similar to the State of São Paulo,
we can estimate that the flying stage lasts between 5
and 10 days, which leads to an egg-to-egg time of 15 to
35 days (Table 1).
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Fig. 4 Least squares fit of analyzed dispersal data from Braack
and Retief (1986). Dotted lines indicate minimum and maximum
acceptable width parameter

Using the previous results and taking into account
these estimates for generational time, our models pre-
dict dispersal velocity between 0.4 and 2.0 km/day for
C. albiceps invasion in the Neotropics.

In order to compare these results with the actual
invasion in the Neotropics, we resort to historical data
published in the 70’s and early 80’s. Baumgartner and
Greenberg (1984) estimated C. albiceps invasion ve-
locity between 1.5 and 1.8km/day. We also retrieved
data stating the first observation of C. albiceps in 73
locations in Brazil (Guimarães et al 1979). This allows
us to estimate the upper bound for the invasion ve-
locity, which turns out to be 2.0km/day. The estimated
range that we had calculated above, between 0.4 and
2.0km/day, is in agreement with the actual invasion
speeds.

Finally, we notice that the spatio-temporal patterns
observed in the dynamics of the models (see, for in-
stance, Figs 1 and 3 are not expected to be observable
in field experiments, as they occur in a spatial scale
close to σ , which is the scale in which the homoge-
nization limit, discussed in Section “The model”, breaks
down.

Table 1 Summary of
parameter ranges used

parameter range

F∗ 220 – 300
eggs/female

S∗ 0.4 – 0.6
σ 7 – 14 km
T 15–35 days

Conclusions and final comments

Invasive species present a rich variety of situations
where the use of mathematical models is helpful to
provide a theoretical setting, allowing to assess ques-
tions such as invasibility and the dynamics of actual
invasions.

The results that we have obtained combine labora-
tory parameters (fertility and survival) with dispersal
data from a field experiment for one-generation, lead-
ing to prediction of the invasion speed of the species.
The agreement of this result with the velocity of an
actual invasion in another geographical range is by no
means trivial. The combination of data obtained at
different spatial and temporal scales could have ham-
pered the applicability of the models. Indeed, that has
been the case, for instance, with the model predictions for
an invasive shrub in North America studied by Neubert
and Parker (2004). Although observations connected to
the pattern of spread have showed agreement with the-
ory (Nash et al 1995; Kot et al 1996; Mistro et al 2005),
quantitative predictions have seldom been tested. Even
in continuous time models, more often it is the spread
pattern, such as a front of constant velocity, that has
been verified, but see Giuggioli et al. (2005).

The fact that the model predictions are supported by
data is probably related to the generalist behavior of
the C. albiceps species with respect to the use of habitat,
being found in wide climatic and geographical ranges
(Richards et al 2009). This not only makes the applica-
tion of data collected in Africa to the Neotropics sensi-
ble, but also strengthens the case for the assumption of
homogeneous space, as in the models presented above.
The spatially homogeneous model yielded consistent
results at a scale of 102-103 kilometers.

In this work we have introduced a two-dimensional
redistribution kernel defined on the semi-plane, thus
breaking radial symmetry of the equations. With the
assumption of a completely reflexive boundary, the
solutions of the model, obtained numerically, give re-
sults similar to the one-dimensional case, although the
invasion speed is slightly larger. To our knowledge,
two-dimensional kernels have been explored only in a
few cases, as for example in Lindström et al. (2011).
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Appendix A: Dispersal data analysis

We use data from a capture-recapture experiment per-
formed by Braack and Retief (1986). The experiment
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consisted of releasing 16000 radioactively marked C.
albiceps blowflies in a central point of the northern
Kruger National Park, South Africa. After one week,
69 traps were placed throughout the park, and the num-
ber of flies, both marked and unmarked, were counted.
The raw data are presented in the first four columns of
Table 2.

The redistribution kernel K(x, x′) gives the proba-
bility of an adult emerging at point x′ to oviposit at x.
The experiment had been set up so that the captures
occur when flies try to oviposit in the meat inside
the trap.

The typical time until oviposition was also carefully
considered, since C. albiceps oviposits only 5 to 7 days
after emerging. Thus traps had been set only after this
interval, which also contributes to avoid overcrowding
of non-marked blowflies in the samples.

To estimate the redistribution kernel, we must ac-
count for several effects, such as area of measurement,
sampling effort and attractiveness of traps.

The area of the park has been divided by Braack and
Retief (1986) in several rings – distance ranges from the
center – of different areas. Since we are interested in
the density of captures, we need to divide the number
of catches by each ring’s area.

We must also counterbalance the sampling effort –
related to the number of traps employed in each area –
and the fact that the environment is heterogeneous at
the scale considered, in such a manner that some traps
might have been placed in more favorable or accessible
places than others. Both biases can be corrected by
looking at the total amount of C. albiceps blowflies
captured, including the non-marked ones, which should
be a proxy for how attractive the traps were. This
quantity incorporates the sampling effort as well, since
the total number of catches will also be related to the
number of traps in each region. Therefore, we divide
the number of marked blowflies by the total amount of
blowflies to obtain the corrected proportion of marked
blowflies in each region.

In view of the above, the reworked density propor-
tion y in each distance range can be calculated by:

y = marked flies
total flies × area

Although these values do not give the actual scale
of population density, they do represent the proportion
of radioactively marked blowflies at different distance
ranges. The result is presented in the last column of
Table 2 and also in the normalized and reflected his-
togram in Fig. 4.

Appendix B: Analytical upper bound for the invasion
speed in the linear case

We will here consider the determination of upper
bounds for the invasion speed for the cases relevant in
this work: the one-dimensional case with one reflexive
boundary, and the two-dimensional case with a separa-
ble kernel.

We employ a plane-wave ansatz to calculate the
speed of invasion of the kernel given by Eq. 8 in one
dimension, in the limit of large distances from the
boundary. Next, we proceed to show that separable
two-dimensional kernels have the same front speeds
as its one-dimensional equivalents, and use those two
results to show that the model defined by Eqs. 7, 8
presents the same asymptotic front speeds in x and y
directions.

One-dimensional kernel with a ref lexive boundary

This kernel is derived supposing a reflexive bound-
ary at x = 0 and an underlying uncorrelated ran

Table 2 Dispersal data for
C. albiceps in the Kruger
National Park, South Africa

The first four columns are
published data (Braack and
Retief 1986), followed by
the results of the analysis

Distance ranges Number Total number Number of Area Density of captured
from central of traps of C. albiceps C. albiceps (km2) flies corrected
release point (km) captured recaptured by total catches

(10−5 flies/km2)

0–4 12 4066 8 50.3 3.91
6–10 19 14270 65 201.1 2.27
12–18.5 16 10801 40 622.8 0.59
20–29 8 5992 9 1385.4 0.11
30–40 12 10455 10 2199.1 0.04
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dom walk process (Chandrasekhar 1943), being
given by:

K(x, x′) =

⎧⎪⎨
⎪⎩

1

σ
√

π

[
e− (x−x′)2

σ2 + e− (x+x′)2
σ2

]
if x′ ≥ 0 ,

0, otherwise.

(10)

Linearizing the model given by Eq. 5, we have

vt+τ (x) = R0
1

σ
√

π

∫ ∞

0
vt(x′)

[
e− (x−x′)2

σ2 + e− (x+x′)2
σ2

]
dx′ ,

(11)

where R0 = F∗S∗/2. Using the plane-wave ansatz,

v(x, t) = v0e−λ(x−ct) , (12)

and assuming that the speed of the front is the minimum
one, we integrate the kernel to arrive at the expression

c = min
λ>0

1

λτ
log

{
R0

2
eσ 2λ2/4

[
1 + er f

(
x
σ

− σλ

2

)

+ e2λxer f c
(

x
σ

+ σλ

2

)]}
(13)

In the limit x → ∞, that is, far from the boundary,
the above expression becomes simply

c = min
λ>0

1

λτ
log

(
R0eσ 2λ2/4

)
, (14)

whose minimum is given by

c = σ

τ
log

√
R0 , (15)

which is the same expression for the asymptotic velocity
in the infinite domain problem (Eq. 9).

Two-dimensional separable kernel

Let K(x, x′; y, y′) be a two-dimensional kernel that can
be separated, that is, written as the product of one
kernel in the x-direction, Kx(x, x′), and another in the
y-direction, Ky(y, y′),

K(x, x′; y, y′) = Kx(x, x′)Ky(y, y′) , (16)

we write the linearization of Eq. 5 once again:

vt+τ (x, y) = R0

∫∫
vt(x′, y′)Kx(x, x′)Ky(y, y′)dx′dy′ .

(17)

We employ the plane-wave solution in the x-
direction, v(x, y) = v0e−λ(x−ct), where c = |cx|, the com-
ponent cy of the velocity being zero in this frame of
reference. This yields:

eλcτ = R0

∫ ∞

−∞
e−λ(x′−x)Kx(x, x′)dx′

∫ ∞

−∞
Ky(y, y′)dy′ .

(18)

Taking into account that Ky is normalized and assum-
ing again that the actual velocity of invasion is the
minimum one, we have:

c = min
λ>0

1

λτ
log

[
R0

∫ ∞

−∞
e−λ(x′−x)Kx(x, x′)dx′

]
, (19)

which turns out to be the expression for the asymptotic
speed of the front of invasion for the one-dimensional
kernel Kx. The analogue reasoning works for the ve-
locity in the y-direction, that is the same as the velocity
of the one-dimensional kernel Ky. This proves that, in
the case of separable kernels, the upper bound for the
asymptotic velocities of invasion are the same for the
one- and the two-dimensional cases.

Finally, we conclude that, since the upper bound for
the velocity in the model given by Eq. 5 is the one
calculated for Kx (Eq. 8) above (Eq. 15) in the x-
direction and the one for Ky (Eq. 7) in the y-direction
(given by Eq. 9), we have that they are indeed the same
in both directions.
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