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A B S T R A C T

Since the emergence of the novel coronavirus disease 2019 (COVID-19), mathematical modelling has become
an important tool for planning strategies to combat the pandemic by supporting decision-making and public
policies, as well as allowing an assessment of the effect of different intervention scenarios. A proliferation of
compartmental models were developed by the mathematical modelling community in order to understand and
make predictions about the spread of COVID-19. While compartmental models are suitable for simulating large
populations, the underlying assumption of a well-mixed population might be problematic when considering
non-pharmaceutical interventions (NPIs) which have a major impact on the connectivity between individuals
in a population. Here we propose a modification to an extended age-structured SEIR (susceptible–exposed–
infected–recovered) framework, with dynamic transmission modelled using contact matrices for various
settings in Brazil. By assuming that the mitigation strategies for COVID-19 affect the connections among
different households, network percolation theory predicts that the connectivity among all households decreases
drastically above a certain threshold of removed connections. We incorporated this emergent effect at
population level by modulating home contact matrices through a percolation correction function, with the few
additional parameters fitted to hospitalisation and mortality data from the city of São Paulo. Our model with
percolation effects was better supported by the data than the same model without such effects. By allowing
a more reliable assessment of the impact of NPIs, our improved model provides a better description of the
epidemiological dynamics and, consequently, better policy recommendations.
1. Introduction

Mathematical models, upon which decision-making and public poli-
cies can be based, have become important tools with which to plan mit-
igating strategies during the SARS-CoV-2 pandemic, and there has been
a recent proliferation of such models (Adam, 2020; Aguas et al., 2020;
Anirudh, 2020; Panovska-Griffiths et al., 2021). Several of these com-
partmental models, which are typically age-structured SEIR
(susceptible–exposed–infected–recovered)-like models, have been pro-
posed and used to assess the effects of multiple interventions (Davies
et al., 2020b; Ferguson et al., 2020; Flaxman et al., 2020; Fumanelli
et al., 2016). As simplified representations of reality, these models come
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with assumptions regarding the nature of the underlying network of in-
teractions (Rahmandad and Sterman, 2008). More explicitly, most SEIR
compartmental models assume that the population is homogeneously-
mixed, meaning that every individual in each compartment has the
same probability of coming into contact with other individuals.

Although these underlying assumptions might be appropriate to
make robust predictions for well-mixed populations, they may not be
suitable in a context with significant contact network heterogeneity.
Therefore, several methods have been proposed to enable compartmen-
tal models to take contact structure heterogeneities into account (min
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Liu et al., 1987; Roy and Pascual, 2006; Stroud et al., 2006). However,
these methods usually consider static underlying network structures,
which are only good approximations for slowly spreading epidemics,
in which neither the contact rates nor the network structure change
significantly over time (Volz and Meyers, 2007; Bansal et al., 2007).
This is not the case in a pandemic situation such as the one caused
by SARS-CoV-2, where governments were compelled to impose wide-
ranging contact and movement restrictions that essentially resulted in a
large reduction in connectivity among individuals. As we discuss below,
this leads to the need for a more flexible and dynamic approach, which
motivated the present study.

In this context, network theory provides a picture of a homoge-
neously mixed population as a (highly connected) regular random
network of individuals (vertices) connected through possible disease
transmission contacts (edges) with long-range connectivity proper-
ties (Bansal et al., 2007). During an outbreak, the disease would
spread across these links. Non-pharmaceutical interventions (NPIs) that
involve social distancing could, therefore, be thought of as modulators
of the strength and even persistence of such links. One of the main
outcomes of network theory is that, as contact networks become
less connected, a critical transition occurs, and the network becomes
fragmented into disconnected (or weakly connected) sub-networks.
This phenomenon is known as percolation (Chen et al., 2007; Essam,
1980), and the existence of a critical percolation threshold in the mean
number of contacts can be established for many types of networks. Once
this threshold has been crossed, even small changes in the number of
contacts can lead to large changes in the connectivity of the network.

In compartmental models, SARS-CoV-2 mitigation strategies are
modelled by altering contact rates, thus changing the force of infection.
This can be performed at varying degrees of granularity, depending
on the level of detail of the contact matrices. For instance, many
studies (Aguas et al., 2020; Noll et al., 2020; Davies et al., 2020a)
have used the categorisation employed by Prem et al. (2021), which
divides contacts into four settings, namely home, work, school, and
other. In this way, the effectiveness of various NPIs are reflected in
reductions in the contact rates for each setting, depending on the nature
of the intervention, e.g. school closures reduce contact rates in schools.
As the overall contact matrix is a linear combination of the contact
matrices for each setting, with coefficients dependent on the coverage
and efficiency of NPIs, each NPI contributes linearly to reduce the
infection force. By itself, this change in contacts among individuals does
not affect the relationship between the mean number of contacts in the
underlying network and the force of infection in the compartmental
model. This is adequate if the structure of the network is not greatly
affected. However, when social distancing NPIs are applied with a
high degree of coverage and connections among individuals are con-
tinuously being removed, this approximation is prone to break down,
and the compartmental model may no longer provide a satisfactory
portrayal of the epidemiological dynamics.

Although the issues above may seem largely theoretical, it became
evident, when attempting to fit compartmental models to data in a situ-
ation where there were strong and time-varying NPIs, that such a task
was not feasible while keeping parameters within reasonable ranges.
There are two current alternatives in such a situation: first, to allow for
a greater number of degrees of freedom for model fitting, which may
lead to overfitting; this is usually done by fitting the epidemic effective
reproduction number (𝑅𝑡) as a function of time, or allowing wider
anges for parameters in spite of knowledge from other sources. The
econd option is to build more complex models incorporating network
tructure, such as individual-based models. Neither of these solutions
etain the simplicity coupled with the explanatory power of traditional
ompartmental models, so we sought instead to adapt these model to
ncorporate the effects of a fluctuating network structure.

Here, we propose an approach that modifies how compartmental
odels incorporate the effects of NPIs to account for changes in net-
2

ork structure and any consequent reduction in the force of infection.
We integrate results from percolation theory into an age-structured
SEIR model by using a non-linear correction function dependent on
the adherence to NPIs that multiplies the resulting contact matrix, thus
directly affecting the force of infection.

In the following sections, we build on the previously implemented
and widely used COVID-19 Modelling Consortium (CoMo) model
(Aguas et al., 2020), adapting its compartmentalisation to the Brazilian
hospital system. Then, we present a nested model version that takes
into account the loss of long-range connectivity (percolation) effect.
Finally, we fit both model versions to hospitalisation and mortality data
for SARS-CoV-2 during 2020 in São Paulo, Brazil. This is the country’s
most populous city, with more than 12 million inhabitants and was
the city in Brazil first to detect COVID-19 cases. By making a model
comparison using the Akaike Information Criterion (AIC) (Burnham and
Anderson, 2013) we found that the data strongly support the model that
incorporates percolation effect.

2. Methods

2.1. Standard model

To model the epidemiological dynamics of COVID-19 in São Paulo,
we apply an age-structured SEIR model with infected compartments
stratified by severity of symptoms, treatment requirement and ac-
cessibility to healthcare. The main framework for this SARS-CoV-2
epidemic model was developed in collaboration with the CoMo Con-
sortium (Aguas et al., 2020) with slightly different treatment seeking
compartments, an adaptation applied to better represent the Brazilian
organisation of hospital beds. The progression of individuals through
the infection cycle, for this version of the CoMo model, is represented
in Fig. 1.

Each model compartment depicted in Fig. 1 is divided into 19
sub-compartments, comprising all 19 age classifications used by the
Brazilian Institute of Geography and Statistics (IBGE, 2016). Trans-
mission between each pair of age classes is evaluated using estimated
contact rates, which are encoded into contact matrices for different
settings (school, work, home and others, denoted as 𝑐) in Brazil, as
estimated by Prem et al. (2021). Each matrix accounts for any con-
tacts within each specific setting. For example, if an individual has a
contact in a household other than their own household, this contact
would still be counted as a ‘‘household contact’’. Prem et al. (2021)’s
study extrapolates from the measurements made during the POLYMOD
project (Mossong et al., 2008), so a more complete definition of a
contact can be found in the original study.

We considered NPI scenarios such as social distancing, working
from home, and school closures. The interventions are given by:

• Self-isolation: symptomatic individuals who do not require hospi-
talisation voluntarily isolate themselves during the time of their
infection and thus reduce the chance of infecting others. This is
modelled as the proportion of individuals that enters the isolated
compartment (X) instead of symptomatic compartment (I), as
shown in Fig. 1.

• Social distancing : this intervention comprises reductions in con-
tacts in churches, markets, social events and gatherings, shopping
activities, gyms, and others. It requires adherence of the popu-
lation to the NPI to be estimated for a given time, as well as
how effective it is in reducing contacts in the ‘‘other’’ setting. It
is modelled as a linear reduction in the ‘‘other’’ contact matrix,
given by 𝑎𝑜𝑡ℎ𝑒𝑟(𝑡).

• Use of masks: this intervention comprises individual protection
measures, gained through the adoption of mask usage. It requires
adherence of the population to the NPI to be estimated for a given
time, along with the effectiveness of mask usage. It is modelled

as a direct reduction in the attack rate and is given by 𝑚𝑎𝑠𝑘(𝑡).
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Fig. 1. A diagram of the baseline model structure for SARS-CoV-2 in Brazil, representing the unmitigated epidemic spread scenario. The variables in the compartments represent
individuals as follows. S: susceptible, E: presymptomatic infectious, A: asymptomatic infectious, I: infectious with mild symptoms, X: infectious with mild symptoms and self-isolated,
H𝐶 : infectious, requiring hospital treatment but denied, H: infectious and hospitalised, ICU: infectious, receiving intensive care, ICU𝐶 : infectious, requiring intensive care but denied,
ICU𝐻 : infectious, requiring intensive care but being admitted to a regular hospital bed, R: recovered, D: deceased. All compartments are further subdivided into 5 year age classes
from 0 to 90+ years old.
• Work from home: this intervention models workers performing
their normal work activities from home. It requires adherence of
the population to the NPI to be estimated, as well as how effective
it is at reducing contacts among workers. It is modelled as a linear
reduction in ‘‘work’’ contact matrix given by 𝑎𝑤𝑜𝑟𝑘(𝑡).

• School closure: this intervention reduces contacts in the school
setting due to limitation of in-school activities or school closures.
It requires the adherence of schools and students to the NPI to
be estimated, as well as the effectiveness of reducing contacts in
the ‘‘school’’ environment. It is modelled as a linear reduction in
‘‘school’’ contacts given by 𝑎𝑠𝑐ℎ𝑜𝑜𝑙(𝑡).

• Cocoon the elderly : this intervention reduces the contacts with a
proportion of the older adult population, given a minimum age
𝐷. It requires the adherence of older individuals to the NPI to
be estimated, as well as how effective isolating older individuals
is. This is modelled as a linear reduction in contacts with and
within older individuals and is further described in Section 2 of
the Supplementary Material (SM).

• Travel ban: this intervention involves the interruption of inward
travel from outside of the city and the isolation of cases coming
from the outside, which reduces or eliminates imported cases.
It is modelled as a linear reduction in the number of infected
individuals that are imported to the study site (which is also a
model parameter).

Here, the effect of some of the mitigation strategies (namely, work
from home, school closure and social distancing) are modelled as linear
corrections to the contact matrices, since these interventions aim to
reduce contact rates or the risk of contagion at each possible contact.
Thus, the effective contact matrix is given by:

𝑐 = 𝑐ℎ𝑜𝑚𝑒 +

(1 − 𝑎 (𝑡)) 𝑐 + (1)
3

𝑤𝑜𝑟𝑘 𝑤𝑜𝑟𝑘
(1 − 𝑎𝑠𝑐ℎ𝑜𝑜𝑙(𝑡)) 𝑐𝑠𝑐ℎ𝑜𝑜𝑙 +

(1 − 𝑎𝑜𝑡ℎ𝑒𝑟(𝑡)) 𝑐𝑜𝑡ℎ𝑒𝑟

where the caret (̂) stands for the contact matrices affected by the
‘‘cocoon elderly’’ NPI.

It is reasonable to assume that the contact rates would decrease
linearly with increasing adherence to mitigating strategies in schools,
workplaces or other settings. Nevertheless, owing to the fact that SEIR-
like models assume underlying homogeneously mixed populations, this
assumption might not hold for household settings as their connectivity
structure is dynamically affected by NPIs in a non-homogeneous fash-
ion. In the next section, we discuss our proposed implementation of
such an effect.

2.2. Model with percolation

The model described in the previous section introduced a phe-
nomenological implementation to account for the effects of NPIs
through a proportional reduction in contact rates in the matrices.
NPIs affected all contact matrices in the standard model, with the
exception of the household matrix (which accounts for both contacts
within and between households, indistinguishably), implying that the
dynamics among households persisted as fully well-mixed, even under
high coverage of NPIs. In reality, however, the contact network among
households should become more sparse as connecting pathways are
removed, in such a way that the ‘‘effective’’ contact rates should be
considerably reduced. We draw a comparison with percolation theory
to address the fact that, above a certain threshold value of combined
NPI adherence, inter-household contacts are much less common.

In a non-NPI scenario, we can picture the entire population as a
collection of households assigned as vertices with links among house-
holds (created due to interactions at work, schools, or other places)
represented by edges. This highly connected network would form one
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giant connected component, which could therefore be approximated as
a homogeneously mixed population (Bansal et al., 2007). However, by
introducing social distancing measures and increasing their coverages,
we break connections in the network until long-range connectivity is
lost. The critical value of the number of connections (or edge density)
where this transition happens is the so-called percolation threshold (Es-
sam, 1980). Above the percolation threshold of contact loss, i.e. in a
high coverage social distancing scenario, we would expect to see the
emergence of small household clusters that, although well connected
within themselves, would be poorly connected between them.

Here we model the percolation effect on home contact matrices
assuming that, while contacts outside households are kept above the
percolation threshold, the effect of mitigation strategies is less apparent
in home settings. On the other hand, the overall probability of infec-
tion of a susceptible individual decreases drastically when their mean
number of contacts drops below a certain threshold (Pastor-Satorras
et al., 2015). Mathematically, we correct the home contact matrix by
a factor dependent on all the coverage and efficiency of all NPI, which
we denote as a percolation correction function, 𝑓𝑝𝑒𝑟𝑐 , that must satisfy
several requirements:

• 0 ≤ 𝑓𝑝𝑒𝑟𝑐 ≤ 1;
• 𝑓𝑝𝑒𝑟𝑐 → 0 as NPIs are completely lifted; for low adherence to NPIs,

no connectivity loss should be noticed as different households
would still be strongly connected;

• 1 − 𝑓𝑝𝑒𝑟𝑐 ≪ 1 for high adherence to NPIs; as connections among
different households are widely severed, so 𝑓𝑝𝑒𝑟𝑐 approaches its
maximum value.

A hyperbolic functional form, as follows, is proposed to model this
ffect:

𝑝𝑒𝑟𝑐 (𝑡) =
ℎ𝑒𝑓𝑓
2

[

1 + tanh
(

ℎ𝑠𝑡𝑒𝑒𝑝(𝑊𝑁𝑃𝐼 (𝑡) − 𝑇𝑝𝑒𝑟𝑐 )
)]

(2)

where 0 ≤ ℎ𝑒𝑓𝑓 ≤ 1 is the maximum reduction in contacts, a parameter
introduced to control the amplitude of the percolation effect (for sim-
plicity, we adopt ℎ𝑒𝑓𝑓 = 1); 0 ≤ 𝑇𝑝𝑒𝑟𝑐 ≤ 1 is the percolation threshold,
i.e. the fraction of connections we need to remove so that the network
no longer percolates; and ℎ𝑠𝑡𝑒𝑒𝑝 is the steepness of the percolation
correction function determining how fast the network percolates: a
large ℎ𝑠𝑡𝑒𝑒𝑝 implies 𝑓𝑝𝑒𝑟𝑐 changing abruptly from 0 to ℎ𝑒𝑓𝑓 in the vicinity
of 𝑊𝑁𝑃𝐼 ≈ 𝑇𝑝𝑒𝑟𝑐 (see Fig. 2).

Finally, 𝑊𝑁𝑃𝐼 is defined as the combined adherence to NPI, where
the resulting reduction of contacts due to each type of intervention are
weighted by the age and contact structure of the population they are
applied to, namely

𝑊𝑁𝑃𝐼 (𝑡) = 𝑝𝑤𝑜𝑟𝑘𝑎𝑤𝑜𝑟𝑘(𝑡) + 𝑝𝑠𝑐ℎ𝑜𝑜𝑙𝑎𝑠𝑐ℎ𝑜𝑜𝑙(𝑡) + 𝑝𝑜𝑡ℎ𝑒𝑟𝑎𝑜𝑡ℎ𝑒𝑟(𝑡) (3)

The weights 𝑝𝑗 , 𝑗 = {𝑤𝑜𝑟𝑘, 𝑠𝑐ℎ𝑜𝑜𝑙, 𝑜𝑡ℎ𝑒𝑟}, are calculated as

𝑝𝑗 =
𝐏(𝑡 = 0)𝑐𝑗𝐏𝑇 (𝑡 = 0)

𝐏(𝑡 = 0)(𝑐𝑤𝑜𝑟𝑘 + 𝑐𝑠𝑐ℎ𝑜𝑜𝑙 + 𝑐𝑜𝑡ℎ𝑒𝑟)𝐏𝑇 (𝑡 = 0)
, (4)

where 𝐏(𝑡 = 0) is the initial age distribution of the population and 𝑐𝑗
the contact matrices in each setting.

Now, clearly, 0 < 𝑊𝑁𝑃𝐼 (𝑡) < 1. Note also that 𝑊𝑁𝑃𝐼 (𝑡) has this
specific form to consider population structure, accounting for how
much each of these NPIs effectively reduce contacts in each age-class.
Also note that 𝑊𝑁𝑃𝐼 (𝑡) can vary according to the current implemented
interventions, adding flexibility to the model.

Finally, considering all effects due to NPIs and percolation (𝑓𝑝𝑒𝑟𝑐),
the effective contact matrix, 𝑐, is written as

𝑐 = (1 − 𝑓𝑝𝑒𝑟𝑐 (𝑡))𝑐ℎ𝑜𝑚𝑒 +

(1 − 𝑎𝑤𝑜𝑟𝑘(𝑡))𝑐𝑤𝑜𝑟𝑘 + (5)
(1 − 𝑎𝑠𝑐ℎ𝑜𝑜𝑙(𝑡))𝑐𝑠𝑐ℎ𝑜𝑜𝑙 +
4

(1 − 𝑎𝑜𝑡ℎ𝑒𝑟(𝑡))𝑐𝑜𝑡ℎ𝑒𝑟
This resultant matrix can, therefore, be used to simulate the over-
all contact rates between age groups, throughout all settings. In the
simulations presented here, the populations and setting-specific contact
matrices for Brazil were obtained from publicly available data (IBGE,
2016; Prem et al., 2021); all 𝑎𝑗 are estimated based on the effect of
mitigation strategies adopted by the city of São Paulo (Toscano et al.,
2020; Secretaria Municipal de Mobilidade e Transportes, Cidade de
São Paulo, 2020; Google, 2020); whereas ℎ𝑠𝑡𝑒𝑒𝑝 and 𝑇𝑝𝑒𝑟𝑐 are obtained
through fitting to epidemiological data.

2.3. Data sources

The data used were time-series of hospitalisations and deaths for
severe acute respiratory illness (SARI) in São Paulo, Brazil, reported in
the 2020 SIVEP-Gripe database (Datasus, 2020). To be certain records
had already been consolidated, i.e. did not suffer from delayed report-
ing (which can be a significant issue in the Brazilian SARI notification
system, demanding corrections that take into account delay distribu-
tions, McGough et al., 2020), we restricted the data to weekly aggregate
data points comprising the first 23 weeks of the pandemic in the city,
from 15 March to 31 August 2020.

Based on the current literature and proxy data for mobility and cov-
erage of NPIs (Google, 2020; Toscano et al., 2020; Secretaria Municipal
de Mobilidade e Transportes, Cidade de São Paulo, 2020), we set values
for all parameters using reasonable data sources or proxies (see SM
Tables III–V for all parameter values and references). Thus, there were
just a few parameters that could not be inferred from the literature
and therefore required to be fitted to epidemiological data. These fitted
parameters were the probability of infection given a contact (𝑝), start
date of community transmission (𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒), and both ℎ𝑠𝑡𝑒𝑒𝑝 and 𝑇𝑝𝑒𝑟𝑐
rom Eq. (2) for the model that takes percolation into account.

.4. Fitted models

We used a Levenberg–Marquardt non-linear least square regression
itting algorithm (Elzhov et al., 2016) to minimise the squared residuals
f the predicted number of weekly cases with to the observed values.
his is equivalent to maximising the likelihood of the model under the
ssumption that the data point errors are normally distributed (details
n SM Section 3). With that, we obtained the maximum likelihood esti-
ates (mle) for 𝑝, 𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒, ℎ𝑠𝑡𝑒𝑒𝑝 and 𝑇𝑝𝑒𝑟𝑐 . This procedure was applied

o test the two versions of the model, in three different scenarios:

• Standard model: derived from the CoMo model (Aguas et al.,
2020), without including the percolation effect, which in practice
meant setting 𝑇𝑝𝑒𝑟𝑐 = ℎ𝑠𝑡𝑒𝑒𝑝 = ℎ𝑒𝑓𝑓 = 0 and fitting only 𝑝 and
𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒 to the data.

• Standard model + 30% NPI adherence: the model equations
and parameters are the same as the standard model, but we
consider a much greater (30%) adherence to all NPIs. This po-
tentially unrealistic instance was included here to show that an
underestimated NPI adherence in the standard version would not
by itself favour the model with percolation — given that we
already know that it always reduces the contact rates.

• Model with percolation: derived from standard model, including
the percolation effect, where 𝑇𝑝𝑒𝑟𝑐 , ℎ𝑠𝑡𝑒𝑒𝑝, 𝑝 and 𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒 were
fitted to the data.

As the model with percolation introduces two extra parameters
itted to data into the standard model, we can consider them nested
odels and therefore compare the quality of the fittings using the AIC.
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Fig. 2. Percolation correction as a function of the combined adherence to interventions (𝑊𝑁𝑃𝐼 ). We plot the resultant curve for different values of ℎ𝑠𝑡𝑒𝑒𝑝, which is the steepness of
the hyperbolic tangent in the definition of 𝑓𝑝𝑒𝑟𝑐 (Eq. (2)). For low 𝑊𝑁𝑃𝐼 , 𝑓𝑝𝑒𝑟𝑐 → 0, meaning no connectivity is lost at low levels of adherence. Near 𝑊𝑁𝑃𝐼 = 𝑇𝑝𝑒𝑟𝑐 , 𝑓𝑝𝑒𝑟𝑐 increases
rapidly. Under the high 𝑊𝑁𝑃𝐼 regime, where more connections are lost, 𝑓𝑝𝑒𝑟𝑐 → ℎ𝑒𝑓𝑓 ≈ 1. Here we used 𝑇𝑝𝑒𝑟𝑐 = 0.6 for the percolation threshold, which is indicated as the curve’s
nflexion point. Note that changing the 𝑇𝑝𝑒𝑟𝑐 value simply translates the curve along the 𝑥-axis.
. Results

We compare the model implementations with and without per-
olation by calculating an NPI-dependent basic reproduction number
𝑅0(𝑊𝑁𝑃𝐼 )) using the next generation matrix (NGM) method (Allen
t al., 2008, Chapter 6). This resultant 𝑅0(𝑊𝑁𝑃𝐼 ) would represent the
pidemic basic reproduction number in a hypothetical fully susceptible
opulation under the NPI corresponding to 𝑊𝑁𝑃𝐼 .

The basic reproduction number is a quantity determined by the
opulation affected by a pathogen in a specific environment, rather
han a variable that is exclusively determined by the biology of a
athogen. Hence, we can interpret this 𝑅0(𝑊𝑁𝑃𝐼 ) as an indicator of
he pathogen’s transmissibility in an environment subjected to the
ombined NPI adherence 𝑊𝑁𝑃𝐼 .

From Fig. 3, we can see that 𝑅0(𝑊𝑁𝑃𝐼 ) diverges between the two
odel versions (standard model and model with percolation) as the

ombined NPI adherence approaches the fitted percolation threshold
indicated as 𝑇𝑝𝑒𝑟𝑐). Percolation implies considerably lower 𝑅0 values

for greater NPI adherence, which is consistent with the sharp decrease
in the effect of NPIs near the percolation threshold modelled by the
percolation correction function (Eq. (2)). In summary, this result shows
that, near to and above the percolation threshold (𝑇𝑝𝑒𝑟𝑐), i.e. for high
combined NPI adherence and effectiveness, the standard model will
always overestimate transmission rates.

After implementing both model versions with equivalent fixed pa-
rameter sets, and also with increased NPIs in one scenario (see Ta-
bles III–V in the SM), we fitted the free parameters (among 𝑇𝑝𝑒𝑟𝑐 , ℎ𝑠𝑡𝑒𝑒𝑝,
𝑝 and 𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒) in each model to weekly new cases and new deaths
from SARI data for São Paulo during 2020. Fig. 4 shows the result-
ing curves for all fitted models, with confidence intervals assuming
that fitted parameters follow a multivariate normal distribution. These
confidence intervals are estimated by parametric bootstrap using the
covariance matrix from the Levenberg–Marquardt algorithm (details
in SM Section 3). The comparison between the two standard model
curves shows that increasing intervention coverages (even to the point
of assuming unrealistic values) can modulate the epidemic curve to a
certain extent, but still does not result in a good fit to data.
5

The resulting parameters and the computed AIC for each model
version are shown in Table 1. Comparing the standard model, the
standard model + 30% NPI and the model with percolation (curves shown
in Fig. 4), the AIC clearly shows a much higher level of empirical
support for the model featuring percolation. Furthermore, we can see
from Fig. 4 that the percolation model better captures the timing and
the size of both case and death peaks.

4. Discussion

Modelling the ongoing COVID-19 pandemic represented an unprece-
dented challenge, as we attempted to make urgent recommendations
and predictions based on scarce information about the underlying
biology of the virus, its main mechanisms of spread, and severity and
fatality rates (Davey Smith et al., 2020; Cyranoski, 2020). Furthermore,
we lacked individual-level data on mobility patterns to accurately
understand the dynamic effect of social distancing NPIs on individual
behaviour and contact patterns.

Although previous studies considered heterogeneous contact struc-
tures in epidemiological models (min Liu et al., 1987; Roy and Pascual,
2006; Stroud et al., 2006), and many others accounted for the effects
of NPIs on transmissibility (Davies et al., 2020b; Ferguson et al., 2020;
Flaxman et al., 2020; Adam, 2020; Aguas et al., 2020; Anirudh, 2020;
Panovska-Griffiths et al., 2021; Fumanelli et al., 2016), few to none of
them made the connection between both phenomena. Strictly speaking,
NPIs can affect the underlying network structure over time due to large-
scale social distancing interventions. In this context, we identified a
demand for more flexible and dynamic modelling approaches taking
into account the non-linear phenomena emerging from social distancing
NPIs.

In the case of the COVID-19 pandemic, governments enforced re-
strictions on movement and contacts, which essentially aimed to re-
move connections among individuals. To take into account the struc-
tural heterogeneities introduced by these social distancing measures on
a population’s contact network, we proposed an optional improvement
to compartmental models that only depends on quantities already
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Fig. 3. NPI-dependent epidemic basic reproduction number (𝑅0(𝑊𝑁𝑃𝐼 )) as a function of the combined NPI adherence for both model versions. Note the sharp divergence near the
percolation threshold (𝑇𝑝𝑒𝑟𝑐 = 0.514, as a result of fitting the model with percolation to data).
Fig. 4. Results from simultaneous model fitting to SARI new cases and new deaths data, for each of the proposed model versions: the model with percolation (blue) and the
standard model (green), using the same parameter sets, apart from the fitted parameters (𝑝, 𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒, 𝑇𝑝𝑒𝑟𝑐 , ℎ𝑠𝑡𝑒𝑒𝑝), and the standard model version with additional 30% adherence
to all NPIs (red) (also fitted to data); dots represent data points from the SIVEP-Gripe database (15 March to 31 August 2020) (Datasus, 2020); and shaded areas represent
bootstrapped confidence intervals based on parameter uncertainty from the fitting (too thin to see for the green curve). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Table 1
Fitted parameter values and AIC evaluated for each of the model versions, as they were fitted to the same
dataset of weekly SARI cases and deaths for São Paulo, which consisted of 23 data points.

Model 𝑝 𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒 ℎ𝑠𝑡𝑒𝑒𝑝 𝑇𝑝𝑒𝑟𝑐 AIC 𝛥AIC

Standard 0.0294 2020-01-15 – – −756 191
Standard + 30% NPI adherence 0.0401 2020-01-30 – – −793 154
Percolation 0.0461 2020-01-30 4.83 0.516 −947 0

𝛥AIC is the difference between the AIC for each model and the minimum overall AIC.
computed when modelling NPIs, without the addition of an excessive
number of parameters which could lead to model over-fitting.

The effect of our proposed implementation of an NPI-induced perco-
lation effect was clearly shown by the evaluation of the NPI-dependent
basic reproduction number, which resulted in a distinctive discrepancy
in the transmissibility when comparing model versions with and with-
out percolation. We determined that for high combined NPI adherence,
the model without percolation highly overestimates transmission rates.
Using the AIC we found a 𝛥AIC = 191, between the model versions
with and without the percolation effect (Table 1), which is orders of
magnitude higher than the conventional threshold of 𝛥AIC ≤ 2 to con-
sider both models equally plausible (Fabozzi et al., 2014). That is, the
model with percolation correction had support from the data analysed.
6

It should be noted that the AIC takes into account biases caused by
over-fitting (Anderson, 2008). Therefore, the stronger support of the
percolation model cannot be attributed to a spurious effect caused by
a few additional parameters.

One alternative solution to the data fitting difficulty would consist
of adjusting other model parameters. However, with further exploration
of the parameter space, even considering less realistic parameter sets
(e.g. tampering with the coverage parameters of NPIs), we could not
obtain a good fit to data. For instance, a 30% increase in NPI adherence
in the standard model (red curve in Fig. 4) did not result in better model
fitness, compared to the model version including percolation.

These results highlight the importance of implementing this non-
linear response to NPIs in compartmental models to obtain a better
representation of the effect of those interventions on a large population.
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5. Conclusion

The proposed improvement to an age-structured SEIR compartmen-
tal model described here, although motivated by the need to better
represent the dynamics of how COVID-19 spreads, was inspired by
network theory and general individual level considerations that could
be applied to any population whose underlying network structure has
been affected by similar fragmentation processes.

We implemented the effect of individuals’ behavioural changes on
a population’s macroscopic dynamics without drastically increasing the
number of fitted parameters in our compartmental model. Specifically,
only two parameters were added to the equations governing the dy-
namic model and these were fitted to epidemiological data. Hence, the
increased model fitness obtained would not imply additional efforts for
decision-makers in terms of data collection.

The usefulness of incorporating this fragmentation process into our
SARS-CoV-2 epidemiological compartmental model was evident, but
it should also be noted that its flexible implementation also permits
it to be applied when modelling the transmission dynamics of other
communicable diseases under similarly high NPI coverage regimes.

Therefore, our framework may be applied to any compartmental
models trying to represent the dynamics of a homogeneously mixed
population suffering drastic changes in its connectivity patterns dur-
ing an epidemic. This result contributes to a more accurate epidemic
modelling, potentially implying better control and prevention policy
recommendations at a public health level.
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