
Theoretical Ecology            (2025) 18:2 
https://doi.org/10.1007/s12080-024-00599-z

RESEARCH

Biological invasions forming intraguild predation communities
in homogeneous and heterogeneous landscapes

Silas Poloni1,2 · Roberto André Kraenkel1 · Renato Mendes Coutinho3

Received: 19 August 2024 / Accepted: 14 November 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract
Intraguild predation (IGP) allows for coexistence between two consumers of a single resource, as long as the intraguild prey
(IG prey) is competitively superior to the intraguild predator (IG predator) and resource population productivity is neither
abundant or limiting. Here, we explore biological invasions forming IGP community modules by either introducing IG prey
or IG predator species to established consumer-resource populations in homogeneous and heterogeneous landscapes, using
reaction-diffusion equations as our modeling framework. Our main methods of analysis are comparing numerical solutions to
linearization techniques and homogenization approximations. We find that in homogeneous landscapes, speeds are linearly
determinate, i.e., depend on low invader population densities at the leading edge. We also find traveling wave solutions and
dynamical stabilization regimes. On heterogeneous landscapes, our results show that depending on habitat preferences of the
three species involved, coexistence regimes can occur regardless of IG-prey being least effective consumer, or be hindered
even when IG-prey remains as the dominant competitor. Our work assesses how fast can organisms invade novel landscapes
in presence of a established IG prey or IG predator and also demonstrates how habitat fragmentation and species habitat
preference can disrupt or facilitate coexistence in IGP communities.

Keywords Spatial ecology · Population dynamics · Reaction-diffusion equations · Mathematical models

Introduction

Often, the introduction of new consumer species in a novel
habitat can generate intraguild predation (IGP) interac-
tions (Alhmedi et al. 2010; Tuckett et al. 2021; Bampfylde
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and Lewis 2007), a multi-species trophic network where
exploitative competitors for a shared resource present a
predator–prey relation (Polis et al. 1989; Polis and Holt
1992). This may lead to exclusion of native species, failure
of invasion, or the formation of an IGP community (Tuckett
et al. 2021; Montserrat et al. 2012; Fritts and Rodda 1998;
Grosholz and Ruiz 1995). Alongside interspecific interac-
tions, landscape heterogeneity plays an important role on
species spatial distributions, coexistence regimes, and move-
ment behavior (Polis et al. 1997; Schtickzelle and Baguette
2003; Abrams 2007), which in turn may also significantly
change how invasions occur. Because so many factors can
alter the course of range expansion events, spatially struc-
tured mathematical models have been vastly used to explore
possible outcomes of biological invasions, and significant
advances in the field allow us to estimate spreading speeds
(see, for instance, Castillo-Chavez et al. (2013)) and analyze
heterogeneous landscapes in a simplified manner (see Yurk
and Cobbold 2018; Cobbold et al. 2022). Nonetheless, three
species IGP communities have not been studied in detail in
such contexts and can reveal regime shifts caused by the
invasion of novel consumers, as well as the main factors
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behind it, such as the interplay of demographic traits and
dispersal behaviors (Holt and Polis 1997). In this work, we
study a three-species IGP model in different landscape set-
tings and provide spreading speeds estimates, show some of
the regimes found numerically, and provide some key factors
that change community formation processes.

Theoretical approaches for population spread have been
continuously developed to provide qualitative and quanti-
tative expectations of different biological and ecological
processes that take place during invasions. The pioneer-
ing works of Fisher (1937); Kolmogorov et al. (1937)
and Skellam (1951) helped establish reaction diffusion equa-
tions (RDE) as the main workhorses of spatial ecology. In
this modeling framework, individuals of a given species
are assumed to move with Brownian motion (hence dif-
fusion), and population levels change according to the
relevant biological processes governing demography, such
as reproduction, death, and intra-specific competition (hence
reaction). This modeling approach allows for estimates of
asymptotic spreading speeds of an invasive species, which
in various cases are linearly determinate, i.e., they depend
on the dynamics of a low density invading population in
face of an established resident community (Weinberger 1978;
Lewis et al. 2002; Castillo-Chavez et al. 2013). Such models
may also present traveling wave solutions, i.e., spatial pro-
files that are maintained through time, but advance in space,
signaling the range expansion and establishment of invad-
ing species (Weinberger 1982; Hosono 1998; Lewis et al.
2002; Malchow 1997). Altogether, such models allow us to
estimate not only how resident communitiesmight shift upon
the introduction of a new species, but also how fast we expect
these changes to take place.

The mathematical foundations for IGP can be found
in Holt and Polis (1997), where a three-species IGP network
is considered. There, we have two consumers of a single
biotic resource, with a predation relation among themselves,
as displayed in Fig. 1. Such predation relation allows coex-
istence between both consumers, in cases which otherwise
would be unattainable due to competitive exclusions (Tilman
et al. 1990; Klausmeier and Tilman 2002). The precise condi-
tions in which coexistence is possible depend on how large is
resource productivity/carrying capacity, and on the intraguild
prey (IG prey) being a stronger exploitative competitor than
intraguild predator (IG predator) (Holt and Polis 1997. Fol-
lowing Tilman et al. (1990), the latter translates into IG prey
leading the resource to lower populational levels than IG
predator (when each consumer is set with resource alone).
Beyond these results, Holt and Polis (1997) highlight many
venues in which the theory can be pushed forward to explain
other potential coexistence mechanisms, such as considering
age structure, adaptive behaviors, and spatial dynamics, such
as dispersal and habitat heterogeneity.

Fig. 1 A three-species intraguild predation network diagram

Notably, reaction diffusion equations have been also
developed and applied to study heterogeneous landscapes
in Shigesada et al. (1986), with the landscape being com-
posed of two patch types that are arranged periodically
over the real line. The work is extended to account for
habitat preferences in Maciel and Lutscher (2013), follow-
ing Ovaskainen and Cornell (2003) to describe individual
movement at the interface between different patches, leading
to interface conditions that are discontinuous in popula-
tion density, but continuous in its flux. It is also possible
to obtain approximate results for RDE models in peri-
odic landscapes following Yurk and Cobbold (2018) and
assuming the dynamics inside a pair of patches occur at a
much smaller time scale than that of the whole landscape.
With this method, Maciel and Lutscher (2018) investigated
how movement behaviors can cause competitive reversals1

between two competing species, revealing possible regime
shift mechanisms based on movement behavior and land-
scape heterogeneity.

Although some insightful results for IGP in spatial
ecology context are present in literature (Bampfylde and
Lewis 2007; Amarasekare 2007; Hall 2010), accounting for
resource population levels and dispersal simultaneously is

1 When the weaker competitor, by exhibiting a more efficient dispersal
behavior than its competitor, can potentially exclude or coexist with
it Cantrell et al. (1998).
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lacking, with both being potential key processes to under-
standing coexistence and exclusion regimes.Also,measuring
speeds of invasion of a consumer species can unravel how
fast possible regime shifts take place, and verifying the for-
mation of spatial profiles, such as traveling wave solutions,
can reveal to which novel regimes resident communities will
shift to. Understanding the homogeneous landscape problem
can also provide expectations for the large spatio-temporal
scale for IGP in heterogeneous landscapes, in which patch
preference behavior of resource and consumer populations
can be accounted for explicitly, and possibly mediate com-
petitive reversals, which in IGP communities would mean
shifting coexistence regimes into exclusion ones and vice-
versa (Holt and Polis 1997; Polis and Holt 1992).

In this work, we consider a version of the classical IGP
model by Holt and Polis (1997) with added ecological dif-
fusion terms to account for movement in homogeneous and
heterogeneous landscapes. In Section“Intraguild predation in
homogeneous landscapes,” we present the model in homo-
geneous landscapes and measure invading speeds as well
as display some of the regimes found. In Section“Intraguild
predation in heterogeneous landscapes,” we present the
corresponding model in heterogeneous/periodic landscapes;
following Yurk and Cobbold (2018); Cobbold et al. (2022),
we perform the homogenization technique, and drawing cor-
respondencewith our findings in the homogeneous landscape
model, we determine conditions for mutual invasibility in the
large spatio-temporal scales. Finally, in Section“Discussion,”
we discuss our results and present future venues of research.

Intraguild predation in homogeneous
landscapes

Model

We consider that population densities vary in continuous
time, t, and space, x, and denote IG prey density as C1 ≡
C1(t, x), IG predator as C2 ≡ C2(t, x), and the shared
resource as R ≡ R(t, x). In our model, every species
move with “ecological” diffusion as in Ovaskainen and Cor-
nell (2003); Maciel and Lutscher (2013), predation relations
are linear, while consumers are subject to natural mortality
and resource grows and reproduces according a density-
dependent growth function. The model equations are then

⎧
⎨

⎩

∂tC1 = ∂2x (D1C1) + b1C1R − αC1C2 − δ1C1,

∂tC2 = ∂2x (D2C2) + b2C2R + βC1C2 − δ2C2,

∂t R = ∂2x (DRR) + G(R) − a1C1R − a2C2R,

(1)

defined on (t, x) ∈ (0, T )×R+, where ai is the attack rate of
consumer i upon the resource, and bi is the conversion rate

of resource into new consumers of species i.2 The natural
mortality of consumer i is denoted δi , and α is the attack rate
of IG predator upon IG prey, while β its conversion rate. The
diffusion coefficient of consumer i is Di , while the diffusion
coefficient of resource is DR .

Finally, in Eq. 1, the functionG(R) describes how resource
grows. We will assume that G(R) ≥ 0 for 0 ≤ R ≤ R∗
and that G(R) < 0 for R > R∗, such that G(R∗) =
0, i.e., resource population grows in the absence of con-
sumers until it attains density R∗. Also, we assume that
R∂RG(R) < G(R) for R > 0, such that resource along-
side a single consumer attain stationary states in the model
without spatial structure. Throughout the text, we consider
the logistic growth function, i.e, G(R) = r R(1 − R/K ),
where K is the carrying capacity and r the intrinsic growth
rate. However, other choices of growth functions that satisfy
the conditions stated have similar qualitative results as we
will display here, e.g., the chemostat growth function, i.e.,
G(R) = ν − r R, where ν is the productivity of the system
and r resource removing rate, which is often used to model
abiotic resources (Klausmeier and Tilman 2002).

Using the change of variables τ = r t , y = √
r/DRx ,

u1 = (β/r)C1, u2 = (α/r)C2, and uρ = R/
√
R∗
1 R

∗
2 , where

R∗
i = δi/bi is the resource level under exclusive presence of

consumer i, we set our equations to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂τu1 = d1∂2y u1 + γm1u1

(

uρ − 1

γ

)

− u1u2,

∂τu2 = d2∂2y u2 + m2u2
γ

(uρ − γ ) + u1u2,

∂τuρ = ∂2y uρ + f (uρ) − e1u1uρ − e2u2uρ,

(2)

where the new quantities are γ = √
R∗
2/R

∗
1 , e1 = a1/β,

e2 = a2/α, f (uρ) = G(
√
R∗
1 R

∗
2uρ)/(r

√
R∗
1 R

∗
2), leading to

a rescaled carrying capacity K ← K/
√
R∗
1 R

∗
2 , di = Di/DR

and mi = δi/r . Coexistence regimes are only possible if
γ > 1, which is a competition outcome measure, i.e., when-
ever γ > 1 (γ < 1), IG prey (IG predator) is the stronger
competitor.

Invasion regimes and community formation

Now, we consider consumer-resource and IGP communities
formed upon introduction of either IG prey or IG predator
into a landscape where either resource is established alone
or alongside a resident consumer. We consider a small invad-
ing population, initially confined in limited space. Then, we
linearize the equations around the invader-free fixed points

2 In fact, bi/ai is the actual conversion rate, but we address bi as it for
short.
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in the sense of the spatially unstructured model. These equa-
tions then represent a low density of the invading population
at the leading edge and allow us to estimate the minimal
spreading speeds, which in turn give us invasibility criteria.

Importantly, successful invasion leads to shifts in the com-
munity. In the case of shifts between IG prey and IG predator,
such that the former is excluded, the single consumer and
resource fixed point is never a center because of our choice
of resource growth function (no sustained oscillations are
possible); however, the coexistence fixed point can be either
stable or a center of oscillations (see Holt and Polis 1997 for
a detailed description of fixed points).

Consumer invades resource inhabited landscape

To start, we consider a landscape where resource is estab-
lished at u∗

ρ = ūρ , f (ūρ) = 0, and a small density of IG
prey initially localized in finite space is invading. IG prey
population at the leading edge, where u1 ≈ 0, is described
by the linearized equation

∂τu1 = d1∂
2
y u1 + u1m1γ

(

ūρ − 1

γ

)

, (3)

which yields the minimal spreading speed

ĉ1→ρ = 2

√

d1m1γ

(

ūρ − 1

γ

)

. (4)

Similarly, IG predator (u2) invading a resource inhabited
landscape will have minimal spreading speed

ĉ2→ρ = 2

√
d2m2

γ
(ūρ − γ ). (5)

Since a single consumer invading a resource inhabited
landscape has linearly determined speed (Lewis et al. 2016;
Owen and Lewis 2001), we have that the asymptotic speeds
of invasions equal theminimal ones, i.e., c∗

i→ρ = ĉi→ρ . Note

that spreading speeds are only real valued for ūρ > γ −1 in the
case of IG prey and ūρ > γ in the case of IG predator. These
set thresholds on parameters of f (uρ). For the logistic growth
function, we have ūρ = K . Then, for K > K1→ρ = γ −1

(K > K2→ρ = γ ), the landscape can be invaded by IG prey
(IG predator).

An example of successful invasion is illustrated in Fig. 2b
for IG prey (IG predator). Note that as IG prey (resp. IG
predator) spreads, the resource level shifts from the carry-
ing capacity K to γ −1 (resp. γ ). Also, the solutions present
the same spatial pattern at different times, i.e., they are
traveling wave solutions of the consumer-resource problem,
connecting the resource only fixed point at y → ∞ to the
resource-consumer fixed point at y → 0.

IG predator invades IG prey and resource inhabited land-
scape

When resource is established alongside oneof the consumers,
however, invasibility criteria change. We start with the case
of resource and IG prey stable at levels u∗

ρ = 1/γ and u∗
1 =

γ f (γ −1)/e1 and consider a small density of IG predator

Fig. 2 Single consumer invading a resource only inhabited landscape,
represented as solutions at different times t . Gray lines are resource,
while black (blue) lines are IG prey (IG predator); color matching
dashed lines are initial conditions. Parameters are 2D1 = 2D2 = DR =

0.6 (space is not rescaled in the figure), m1 = 2m2 = 2e1 = e2 = 1.2
and γ = 1.5. In a, K = 0.87, while in b, K = 3. We use Neumann
boundary conditions on both spatial domain extremities
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invaders localized in a finite space. The linearized equation
at the leading edge, where u2 ≈ 0, is

∂τu2 = d2∂
2
y u2 + u2

(
m2

γ

(
1

γ
− γ

)

+ γ

e1
f (γ −1)

)

, (6)

yielding minimal speed

ĉ2→(1,ρ) = 2

√
D2γ

e1

(

f (γ −1) − m2e1
γ 2

(

γ − 1

γ

))

. (7)

Under the assumption that the minimal spreading speed is
the asymptotic one, IG predator invades a landscape inhab-
ited by resource and IG prey given

f (γ −1) > f2→(1,ρ) = m2e1
γ 2

(

γ − 1

γ

)

, (8)

which in turn sets new thresholds for parameter values of f .
For logistic growth, the carrying capacity must follow:

K > K2→(1,ρ) = 1

γ (1 − γ f2→(1,ρ))
. (9)

In the case γ < 1, condition Eq. 8 is always satis-
fied, so that IG predator always invades and competitively
excludes IG prey. For γ > 1, in the parameter region
K1→ρ < K < K2→(1,ρ), we have that only IG prey is able to
invade the landscape, while in K > K2→(1,ρ), IG predator is
able to invade the landscape, and, depending on the precise
value of K , IG prey either coexists alongside IG predator
(see Fig. 3a) or is excluded (Fig. 3b). Note that, for γ > 1,
we have K2→(1,ρ) < K2→ρ , so the presence of a resident
IG prey population facilitates IG predator invasion for these
carrying capacity values.

In Fig. 3a and b, we see spatial patterns being formed from
t = 50 to t = 100 and maintained at longer times. In Fig. 3a,
the travelingwave solution connects the IG prey and resource
fixed point at y → ∞ to the coexistence one in y → 0, while
in Fig. 3b, it connects the IG prey and resource fixed point
to the IG predator and resource fixed point.

IG prey invades IG predator and resource inhabited land-
scape

Finally,we consider a landscape inhabited by resource and IG
predator, at stable densities u∗

ρ = γ and u∗
2 = γ −1 f (γ )/e2.

A small density of IG prey, u1 ≈ 0, is described by the
linearized equation

∂τu1 = d1∂
2
y u1 + u1

(

m1γ

(

γ − 1

γ

)

− 1

γ e2
f (γ )

)

, (10)

and has minimal speed

ĉ1→(2,ρ) = 2

√
D1

γ e2

(

m1e2γ 2

(

γ − 1

γ

)

− f (γ )

)

, (11)

yielding yet another threshold for f in which IG prey is able
to invade the landscape, given by

f (γ ) < f1→(2,ρ) = m1e2γ
2
(

γ − 1

γ

)

. (12)

The threshold for carrying capacity is

K < K1→(2,ρ) = γ

1 − γ −1 f1→(2,ρ)

. (13)

Fig. 3 IG predator invading a IGprey and resource inhabited landscape,
represented as solutions at different times t . Gray lines are resource,
while black (blue) lines are IG prey (IG predator); color matching
dashed lines are initial conditions. Parameters are 2D1 = 2D2 = DR =

0.6, m1 = 2m2 = 2e1 = e2 = 1.2, and γ = 1.5. In a, K = 6.5, while
in b, K = 18. We use Neumann boundary conditions on both spa-
tial domain extremities and present only the right moving part of the
solution
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Fig. 4 IG prey invading a IGpredator and resource inhabited landscape,
represented as solutions at different times t . Gray lines are resource,
while black (blue) lines are IG prey (IG predator); color matching
dashed lines are initial conditions. Parameters are 2D1 = 2D2 = DR =
0.6, m1 = 2m2 = 2e1 = e2 = 1.2, and γ = 1.5, K = 1.6. Travel-
ing wave solutions connect the resident IG predator and resource fixed
point to the coexistence one. We use Neumann boundary conditions on
both spatial domain extremities and present only the right moving part
of the solution

For γ < 1, i.e., when IG prey is not the best competitor, its
minimal spreading speed is never real valued. Assuming that
the minimal spreading speed is the asymptotic one, we have
that IG prey is never able to invade. For γ > 1, K2→(1,ρ) <

K < K1→(2,ρ) is a mutual invasibility region, i.e., IG prey
can invade an IGpredator occupied landscape and vice-versa,
leading to a region of coexistence between both consumers
(see Fig. 4). The region K > K1→(2,ρ) IG prey can no longer
invade an IG predator occupied landscape, and, in turn, IG

predator invasions lead to IG prey exclusion, as previously
shown in Fig. 3. Also for γ > 1, we have K2→(1,ρ) < K2→ρ ,
and IG prey can never competitively exclude a resident IG
predator population upon invasion.

When the coexistence fixed point is unstable and has
maintained oscillations, the system can display dynamical
stabilization (Malchow and Petrovskii 2002; Petrovskii and
Malchow 2000). In Fig. 5, as the front of invasion advances
with speed ci→( j,ρ), the interface between the dynamical sta-
bility region and oscillatory regime also advances in space,
but with a smaller speed than the front, such that the length
of the dynamical stability region is increasing throughout
invasion, similar to what is found in Malchow and Petrovskii
(2002).

Asymptotic spreading speeds

Weassumed that theminimal spreading speeds correspond to
the asymptotic ones. Measuring the spreading speeds numer-
ically (dots in Fig. 6a–d) reveals that, for the explored region
of parameter space, this is indeed the case, i.e., the asymp-
totic spreading speeds equal the minimal ones (solid lines in
figures 6a–d).

Note that increasing carrying capacity ( Fig. 6a) increases
IG predator spreading speed while decreases IG prey spread-
ing speed, as expected, since we have a lower threshold for
IG predator invasion in terms of carrying capacity (K2→(1,ρ))
and an upper threshold for IG prey invasion (K1→(2,ρ)).
Increasing the invading species diffusivity (Fig. 6b) increases
both consumers spreading speeds, as expected.

Fig. 5 IG prey invasion leading
to dynamical stability (light gray
colored region) at t = 200 (top)
and t = 450 (bottom).
Parameters used are K = 3,
γ = 2, and
e2 = 2e1 = m1 = 2m2 = 1.2,
D1 = D2 = DR = 0.5
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Fig. 6 Numerical (dots) and linearly obtained (lines) spreading speeds
for IG prey (black, Eq. 11) and IG predator (blue, Eq. 7). We always
analyze the cases of invasion upon a consumer-resource community.
We have speed as a function of carrying capacity in a, diffusivity in b,

mortality in c, and attack rate in d. Parameters used, with the exception
of the varying ones on the x axis in each of their respective figures, are
D1 = D2 = DR = 0.5, γ = 1.5, m2 = 2m1 = 2e1 = e2 = 1.2,
K = 3

Spreading speeds behavior in respect to mi and ei is
not trivial. Note that increasing rescaled mortalities mi and
resident consumer attack rates upon resource e j produce
opposite behaviors on IG prey and IG predator. The main
reason lies in the fact that, at the leading edge, the net effect
of competition for resource is positive (negative) in IG prey
(IG predator). Since the net effect of competition in con-
sumer i is proportional to mi , increases in m1 increase IG
prey spreading speed, while the opposite holds for IG preda-
tor. A similar discussion can be made in terms of ei and the
net effect of intraguild predation at the leading edge. While
increasing e1 decreases the total available IG prey for the
consumption of an invading IG predator, thus, reducing its
spreading speed, increasing e2 decreases the total amount of
IG predator, reducing predation pressure on an invading IG
prey and allowing it to spread with faster speeds.

To illustrate the effects of invasion leading to both regimes
on the spreading speeds, we calculate numerical spreading
speeds (dots in Fig. 7) and compare them to the ones obtained
from linearization (solid lines in Fig. 7) in a parameter region

where the coexistence fixed point is unstable (region γ > 2
in Fig. 7). We observe that, although traveling wave solu-

Fig. 7 Asymptotic spreading speeds for different values of γ . In the
region γ > 1.8 (roughly), dynamic stabilization regimes are possible.
The numerically obtained speeds (dots)match expressionsEqs. 7 and 11
(lines). Parameters used are K = 5 and e2 = 2e1 = m1 = 2m2 = 1.2,
D1 = D2 = DR = 0.5
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tions are not being formed, the spreading speeds are still
linearly determined and expressions Eqs. 7 and 11 provide
accurate estimates. This was expected, since it also holds in
the case of dynamical stabilization regimes of predator–prey
models (Malchow and Petrovskii 2002).

Intraguild predation in heterogeneous
landscapes

Model

We follow Maciel and Lutscher (2013); Yurk and Cobbold
(2018); Cobbold et al. (2022) closely. We let the space be
composed of two types of patches, 1 and 2, of sizes l1 and
l2, respectively, displaced periodically on the real line. We
denote the densities of IG prey inside patches of the j-th type
as C1 j , while for IG predators and resource, we use C2 j and
R j , respectively. The dynamics of these populations on a
patch of type j are given by

⎧
⎨

⎩

∂tC1 j = ∂2z (D1 jC1 j ) + F1 j ,

∂tC2 j = ∂2z (D2 jC2 j ) + F2 j , z ∈ Tj

∂t R j = ∂2z (DRj R j ) + FRj ,

(14)

where Tj is the set of points within patches of type j , i.e.,

T1 = {z ∈ R | m(l1 + l2) < z < m(l1 + l2) + l1 ∀ m ∈ Z}, (15)

T2 = {z ∈ R | m(l1 + l2) − l2 < z < m(l1 + l2) ∀ m ∈ Z}, (16)

and Fi j ≡ Fi j (C1 j ,C2 j , R j ), i = 1, 2, R, are the growth
functions of species i in a patch of type j . Following our
model in homogeneous space Eq. 1 and letting intraguild
predation relations occur in both patches, we have

F1 j (C1 j ,C2 j , R j ) = b1 j C1 j R j − α j C1 j C2 j − δ1 j C1 j (17)

F2 j (C1 j ,C2 j , R j ) = b2 j C2 j R j + β j C1 j C2 j − δ2 j C2 j (18)

FRj (C1 j ,C2 j , R j ) = G j (R j ) − a1 j C1 j R j − a2 j C2 j R j , (19)

with symbols maintaining their definition as in Eq. 1, but
now containing an extra index, j , to denote the patch type in
which they are valid. The same is true for the diffusion coef-
ficients Di j . Also, we keepG j , j = 1, 2, as a logistic growth
function,3 with intrinsic growth rate r j and carrying capacity
K j . For the description of parameters and their correspon-
dence to the homogeneous model Eq. 1, check Table 1.

At the interface zm of patches of type 1 and 2, we assume
continuous flux, but discontinuous densities, to account for

3 Here, the choice of logistic growth function reflects a living resource
species that actively moves and selects between different patches.

habitat preference (Ovaskainen and Cornell 2003; Maciel
and Lutscher 2013), leading to

{
C11(z+m , t) = k1C12(z−m , t)

D11∂zC11(z+m , t) = D12∂zC12(z−m , t)
(20)

where zn = n(l1 + l2) + ζnl1, ζn = 1 (ζn = 0) if n is odd
(even), and k1 is the IG prey density effective patch pref-
erence. We proceed similarly for IG predator and resource
populations towrite their interface conditions and define their
patch preferences, k2 and kR , respectively.

We follow Maciel and Lutscher (2013) to set

ki = Di2

Di1

αi

1 − αi
, (21)

where αi ∈ (0, 1) is the probability of species i , i = 1, 2, R,
to move from the interface into a type 1 patch.

It is helpful to write the model Eq. 14 in a shorter notation.
We define the piece-wise constant (in z) functions Di (z) =
Di j , z ∈ Tj and Fi (z, ·) = Fi j (·), z ∈ Tj , to write

⎧
⎨

⎩

∂tC1 = ∂2z (D1(z)C1) + F1(z, ·),
∂tC2 = ∂2z (D2(z)C2) + F2(z, ·),
∂t R = ∂2z (DR(z)R) + FR(z, ·).

(22)

Of course, Eq. 22 is only equivalent to Eq. 14 when
interface conditions Eq. 20 are accounted for. However, this
notation allows us to quickly address population densitiesC1,
C2, and R in the landscape level (across multiple different
patches).

Homogenization technique

We proceed with a multiscale analysis and approximation
method following Yurk and Cobbold (2018); we will briefly
outline the method, but refer to the original study for more
details. Also, we will describe the methods in terms of a
single species, C1, but the proceedings are the same for C2

and R and are to be taken simultaneously.
We define the large scale x and the small scale z = x/�,

with � = l1 + l2  1 in the large scale, and assume that
population densities depend on both x and z, leading to
C1 ≡ C1(x, z, t), the IG prey density in both. Expanding
such solutions in �, we get

C1(x, z, t) =
∞∑

q=0

�qC (q)
1 (x, z, t), (23)

and assuming x and z are independent, we have ∂z → ∂x +
1
�
∂z .When substituting the expanded solution and the change

of variables to Eq. 14 with interface conditions Eq. 20, we
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Table 1 Symbol
correspondence for parameters
on models Eqs. 1, 14, and 25

Parameter/variable Homogeneous Heterogeneous Heterogeneous
Landscape Landscape Landscape

(small scale) (homogenized)

Population densities C1,C2, R C1 j ,C2 j , R j Ĉ1, Ĉ2, R̂

(Effective) diffusion Di Di j D̂i = l̂2i 〈Di 〉(H)

Resource growth G(R) = G j (R j ) = Ĝ(R̂) =
r R(1 − R/K ) r j R j (1 − R j/K j ) 〈r〉R̂(1 − R̂/K̂ )

Intrinsic growth rate r r j 〈r〉 = l1r1+l2r2/kR
�R

Carrying capacity K K j K̂ = 〈r〉�2R
l1r1/K1+l2r2/(K2k2R )

Death rate δi δi j 〈δi 〉 = l1δi1+l2δi2/ki
�i

Attack rate ai ai j 〈ai 〉 = l1ai1+l2ai2/(kRki )
�R

Conversion rate bi bi j 〈bi 〉 = l1bi1+l2bi2/(kRki )
�i

IGP attack rate α α j 〈α〉 = l1α1+l2β2/(k1k2)
�1

IGP conversion rate β β j 〈β〉 = l1β1+l2β2/(k1k2)
�2

find a system of coupled equations that can be solved for
C (0)
1 ,C (1)

1 ,C (2)
1 .

The leading order of the expansion, C (0)
1 , is given by

C (0)
1 (x, z, t) = Ĉ1(x, t)

h1(z)
, (24)

where h1(z) = 1 (h1(z) = k1) for z ∈ T1 (z ∈ T2). Apply-
ing the same procedure to C2 and R, we arrive in a similar
expression for C (0)

2 and R(0), with h2(z) and hR(z) defined
in the same fashion as h1(z). Since hi (z) > 0 ∀i, z, the pop-
ulation densities are strongly dependent on Ĉ1, Ĉ2 and R̂,
which are obtained by solving

⎧
⎪⎨

⎪⎩

∂t Ĉ1 = l̂21〈D1〉(H)∂2x Ĉ1 + 〈F1〉(Ĉ1, Ĉ2, R̂),

∂t Ĉ2 = l̂22〈D2〉(H)∂2x Ĉ2 + 〈F2〉(Ĉ1, Ĉ2, R̂),

∂t R̂ = l̂2R〈DR〉(H)∂2x R̂ + 〈FR〉(Ĉ1, Ĉ2, R̂),

(25)

where l̂i , 〈Di 〉(H), and 〈Fi 〉 are the scaled spatial periods,
diffusion coefficients, and growth functions of species i in
the large scale, respectively. Namely, the scaled periods are

given by

l̂i = �

�i
, with �i = l1 + l2

ki
, (26)

while the diffusion coefficients are the harmonic mean
between the diffusion coefficients of each habitat, i.e.,

〈Di 〉(H) = �i
l1
Di1

+ ki l2
Di2

(27)

and the growth functions are the arithmetic mean ofFi j , i.e.,

〈Fi 〉(Ĉ1, Ĉ2, R̂) = 1

�i
(l1Fi1(Ĉ1, Ĉ2, R̂) + l2Fi2(Ĉ1/k1, Ĉ2/k2, R̂/kR)).

(28)

Rearranging the terms in 〈F j 〉, we find that system Eq. 25
can be written in the same form as Eq. 1, i.e.,

⎧
⎪⎨

⎪⎩

∂t Ĉ1 = ∂2x (D̂1Ĉ1) + 〈b1〉Ĉ1 R̂ − 〈α〉Ĉ1Ĉ2 − 〈δ1〉Ĉ1,

∂t Ĉ2 = ∂2x (D̂2Ĉ2) + 〈b2〉Ĉ2 R̂ + 〈β〉C1C2 − 〈δ2〉C2,

∂t R̂ = ∂2x (D̂R R̂) + 〈G〉(R̂) − 〈a1〉Ĉ1 R̂ − 〈a2〉Ĉ2 R̂.

(29)
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We organize the definition and correspondence between
the heterogeneous landscape homogenized parameters in
model Eq. 29 and the homogeneous landscape parameters
in model Eq. 1 in Table 1.

With the parameters defined in Table 1, we rescale time,
space, and population densities as follows:

U1 = 〈β〉
〈r〉 Ĉ1 U2 = 〈α〉

〈r〉 Ĉ2 UR = R̂√

R̂∗
1 R̂

∗
2

,

t ′ = 〈r〉t x ′ =
√

〈r〉
D̂R

x
(30)

where

R̂∗
i = 〈δi 〉

〈bi 〉 = l1δi1 + l2δi2/ki
l1δi1
R∗
i1

+ l2δi2
R∗
i2ki kR

, (31)

is the (approximate) resource level when established with
only consumer i in an heterogeneous landscape. R∗

i j has a

similar definition as R̂∗
i (and R∗

i in Eq. 1), but only with
respect to the patch type j , i.e., R∗

i j = δi j/bi j , j = 1, 2, and
i = 1, 2.

After some algebra, system Eq. 29 can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂t ′U1 = σ1∂
2
x ′U1 + M1U1

(

UR − 1



)

−U1U2,

∂t ′U2 = σ2∂
2
x ′U2 + M2U2


(UR − ) +U1U2,

∂t ′UR = ∂2x ′UR + �(UR) − E1U1UR − E2U2UR,

(32)

which is precisely in the same form of Eq. 2. The new quan-
tities are

Mi = 〈δi 〉〈r〉 , E1 = 〈a1〉〈β〉 , E2 = 〈a2〉〈α〉 ,

σi = D̂i

D̂R
,  =

√
R̂∗
2

R̂∗
1
, �(UR) = Ĝ(

√

R̂∗
1 R̂

∗
2UR)

〈r〉
√

R̂∗
1 R̂

∗
2

,

(33)

where we rescale the carrying capacity to K̂ ← K̂/

√

R̂∗
1 R̂

∗
2 .

Mutual invasibility conditions

Since models Eqs. 32 and 2 are in the same form, we expect
mutual invasibility of IG prey and IG predator to take place
in the same correspondent parameter regions as found for
the homogeneous landscapes. This way, we expect mutual
invasibility only for > 1, i.e., when the homogenized com-
petitivemeasure shows that IGprey is the stronger competitor
and within a range of effective carrying capacities K̂ .

The condition  > 1, in full form, becomes

γ1γ2 >

(
θ̃2k2kR + δ̃2l/θ̃2

k2 + δ̃2l

) (
θ̃1k1kR + δ̃1l/θ̃1

k1 + δ̃1l

)−1

, (34)

where l = l2/l1 is the ratio of patch sizes, δ̃i = δi2/δi1
is the ratio of species i death rates in patch 2 and patch 1,
θ̃i = √

R∗
i2/R

∗
i1, the ratio between resource levels in presence

of species i in different patch types. Finally, γ j =
√
R∗
2 j/R

∗
1 j

is the competition outcome measure in patches of type j .
Whenever the right-hand side of inequality Eq. 34 is

smaller than unity, mutual invasibility is facilitated and can
occur even if γ j < 1, j = 1, 2, i.e., competitive reversals in
favor of IG prey are possible. At the same time, whenever
the right-hand side is larger than unity, mutual invasibility
is hindered and may not occur even if γ j > 1, j = 1, 2,
i.e., competitive reversals in favor of IG predator are also
possible. When the right-hand side is precisely unity, the
condition reduces to γ1 > γ −1

2 , that is, whenever IG prey
is not competitively stronger in one of the patches, it has to
overcompensate for it in the other patch.

The possible competitive reversal scenarios found on
inequality Eq. 34 depend heavily on all three species patch
preferences, ki , i = 1, 2, R, how patchy the landscape is,
given by l, as well as consumer traits (θ̃i and δ̃i ). To simplify
this relation and gain some insight on how habitat prefer-
ences govern inequality Eq. 34, we assume γ1 = γ2 = γ ,
which also implies θ̃1 = θ̃2 = θ̃ , and define qR = θ̃2kR and
ηi = δ̃i/ki . With that, condition Eq. 34 becomes

γ 2 >

(
qR + η2l

1 + η2l

)(
1 + η1l

qR + η1l

)

= w(qR, l, η1, η2). (35)

Note that w(qR = 1, ·) = 1, i.e., whenever qR = 1, we
recover the conditions found in an homogeneous landscape.
Moreover,

sign(∂qRw) = sign (η1 − η2) (36)

such that if η1 > η2, then w is monotonically increas-
ing in qR and monotonically decreasing otherwise. Because
qR is monotone in θ̃ and kR , w is also monotone in these
parameters. Since w(qR = 1, ·) = 1, if w is monotonically
increasing in qR (Fig. 8a), then for qR > 1, we have hindered
mutual invasibility conditions, γ 2 > w(qR, ·) > 1, i.e., γ

must be larger than what is expected in an homogeneous
landscape. For qR < 1, we have facilitated mutual invasi-
bility conditions, γ 2 > w(qR, ·) with w(qR, ·) < 1, i.e., γ

can be smaller than what is expected in an homogeneous
landscape. The opposite holds when w is monotonically
decreasing (Fig. 8b).
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Fig. 8 Regimes of facilitated and hindered mutual invasions, depending on how the quantities ηi = δ̃i
ki
, i = 1, 2 relate

The ecological interpretation of inequality Eqs. 35 and 36
is as follows:ηi = δ̃i/ki relates species i patch preference, ki ,
and howmuch larger is its death rate in patches of type 2 com-
pared to type 1, δ̃i .Whenever there is a difference between IG
prey and IG predator in this relation, then mutual invasibil-
ity is hindered or facilitated depending on how unbalanced
is resource consumption between different patches, θ , and
resource patch preference kR .

To understand solely the effects of patch preferences, let
δ̃1 = δ̃2, θ̃ = 1 and consider the following example: IG prey
prefers patches of type 1, and IG predator prefers patches of
type 2, such that k2 < 1 < k1, and therefore, w is mono-
tonically decreasing. The region kR > 1 (resource prefers
patches of type 1) leads to a competitive reversal in favor of
IG prey whenever w < γ 2 < 1, while the region kR < 1
(resource prefers patches of type 2) leads to competitive
reversals in favor of IG predator whenever w > γ 2 > 1. The
outcomes of the example are reversed when k1 < 1 < k2,
i.e., IG prey and IG predator patch preferences are switched.
This way, whichever consumer has their patch preferences
aligned with resource species’ patch preference can benefit
from competitive reversals.

Similarly, we can understand competitive reversal scenar-
ios only considering the death rate ratios, δ̃i , and uneven
resource consumption between patches, θ̃ , through the fol-
lowing example: Let k1 = k2 and kR = 1 and consider IG
prey have a smaller death rate in patches of type 1 than in
patches of type 2, and the opposite for IG predator, such that
δ̃2 < 1 < δ̃1. With that, w is monotonically increasing in
θ̃ . For θ̃ < 1, i.e., resource is less consumed in patches of
type 1, wemay have competitive reversals in favor of IG prey
whenever w < γ 2 < 1, while θ̃ > 1 favors IG predator if
w > γ 2 > 1. That way, whenever the patch where IG prey
dies less is also the one where resource is less consumed,

we have facilitated mutual invasibility, while hindered con-
ditions apply when we have the opposite.

We could also discuss similar effects that occur between
k1, k2 and θ̃ , as well as between δ̃1, δ̃2 and kR , but the
outcome would be quite similar. In a general manner, when-
ever the conditions favor IG prey (IG predator) in some
way, the mutual invasibility conditions are facilitated (hin-
dered). To formally write these parameter regions, we define
δη = η1 − η2 and write the facilitated, H f , and hindered,
Hh , mutual invasion conditions as quadrants in the parameter
space (qR, δη) ∈ R+ × R defined by

H f = {(qR , δη) ∈ R+ × R|qR < 1 and δη > 0 or qR > 1 and δη < 0}, (37)

Hh = {(qR , δη) ∈ R+ × R|qR > 1 and δη > 0 or qR < 1 and δη < 0}. (38)

The ratio among patch sizes, l, does not appear in any of
the relations discussed so far, but it does play an important
role. Again, we focus on the case γ1 = γ2 = γ , just to
simplify expressions and gain some insight.

We have 2 = γ 2/w, and we note that

lim
l→0

(l, ·) = lim
l→∞ (l, ·) = γ, (39)

i.e., whenever the landscape is almost homogeneous (l1 � l2
or l2  l1), we recover the homogeneous mutual invasion
conditions.

A quick inspection on the derivative ∂l
2 reveals that

sign(∂l{2}) = sign

[

(qR − 1)δη

(
η1η2

qR
l2 − 1

)]

, (40)

so ∂l switches sign just once, at l∗ =
√

qR
η1η2

, which is

therefore the only extreme point of  w.r.t l, and limits
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Eq. 39 imply  is bounded by its extreme, (l = l∗, ·),
and γ . Note that l∗ is the maximum point of (l, ·) when-
ever (qr , δη) ∈ H f , and by limits in Eq. 39, we have
γ < (l, ·) ≤ (l = l∗, ·). Therefore, if γ > 1, mutual
invasion regimes are possible for any l. In a similar fashion,
l∗ is a minimum point of (l, ·) whenever (qr , δη) ∈ Hh ,
and the limits in Eq. 39 imply (l = l∗, ·) ≤ (l, ·) < γ .
Therefore, if γ < 1 mutual invasion regimes are not possible
for any l. That is, whenever IG prey (resp. IG predator) is
the superior competitor and is benefited by facilitated (resp.
hindered) mutual invasion conditions, mutual invasions can
(resp. do not) take place regardless of how patchy the land-
scape is.

Now, assuming that l∗ is a maximum point, in order to
have (l = l∗, ·) > 1, we must have

γ 2 >

δ̃1
k1
qR + δ̃2

k2
− 2

√

qR
δ̃1
k1

δ̃2
k2

δ̃1
k1

+ δ̃2
k2
qR − 2

√

qR
δ̃1
k1

δ̃2
k2

= w(qR, l∗, η1, η2). (41)

However, w(qR, l∗, η1, η2) < 1 for (qR, δη) ∈ H f . By con-
tinuity of (l, ·), whenever

w(qR, l∗, η1, η2) < γ 2 < 1, (42)

we have competitive reversals in favor of IG prey around a
neighborhood of l∗ and mutual invasions are possible, i.e.,
in order to have  > 1 even when γ < 1, the proportion of
patch type lengths must be close to l∗.

The precise extent of l values at which competitive rever-
sals occur is obtained by solving (l = l̄, ·) = 1, which

yields l̄± = l̄0 ±
√

l̄20 − l∗2, where

l̄0 = − 1

2η1η2

(

η1
(γ 2 − qR)

(γ 2 − 1)
+ η2

(γ 2qR − 1)

(γ 2 − 1)

)

. (43)

Note that roots l̄± become negative whenever γ > 1 and
(qR, δη) ∈ H f . In this regime, mutual invasion becomes
possible for any l, as expected.

By assuming that l∗ is a minimum, i.e., that hindered
mutual invasion conditions take place, we arrive at comple-
mentary results. We have

w(qR, l∗, η1, η2) > 1 for (qR, δη) ∈ Hh, (44)

and whenever

1 < γ 2 < w(qR, l∗, η1, η2), (45)

competitive reversals occur in favor of IG predator. Mutual
invasions are only possible outside the range [l̄−, l̄+], i.e.,
when the landscape is more homogeneous/less patchy. Also,

if γ < 1 and (qR, δη) ∈ Hh , both l̄± become negative and
mutual invasibility is not possible, as expected.

Whenever competitive reversals occur, (qR, δη) deter-
mines in which direction the reversals are and the roots l±
delimit the heterogeneity levels of the landscape necessary
for it. Still, mutual invasibility regions only take place within
a range of effective carrying capacities, K̂ . We proceed as in
the homogeneous case and define

�1→(2,R) = M1E2
2
(

 − 1



)

, (46)

�2→(1,R) = M2E1

2

(

 − 1



)

, (47)

and with these, the threshold values in K̂ become

K̂1→R = 1


, (48)

K̂1→(2,R) = 

1 − −1�1→(2,R)

, (49)

K̂2→(1,R) = 1

(1 − �2→(1,R))
, (50)

K̂2→R = . (51)

Themutual invasibility region is delimited by K̂2→(1,R) <

K̂ < K̂1→(2,R), which only exists if  > 1. We investigate
these regions in the plane (K̂ , l) by plotting the different
threshold values K̂·. To illustrate the precise effects of com-
petitive reversals, we focus again on γ1 = γ2 = γ .

First, let us consider the case of competitive reversals in
favor of IG prey; we considerw(qR, l∗, η1, η2) < γ < 1 and
(qR, δη) ∈ H f , to plot Fig. 9. At the limits log(l) → ±∞,
the landscape ismore homogeneous and heavily composed of
a single patch type, and regime shifts from increasing levels
of carrying capacity occur only from resource alone (pastel
colored) to IG predator and resource communities (blue col-
ored). Note that the l ∈ [l̄−, l̄+] region, when the landscape
becomes more patchy, we have  > 1 in the upper plot, cor-
responding to the l region where IG prey can establish alone
with resource (gray colored) and mutual invasions can occur
(cyan colored) in the lower plot. All curves are increasing
in log(l) because kR < 1/2, so resource strongly prefers
patches of type 1, which length’s proportion decreases with
increasing l.

To compare the approximation in Fig. 9 with numeri-
cal results, we plot the maximum population densities in
Fig. 10. For that, we let 10 pairs of patches 1 and 2 of equal
size (l1 = l2 = 1) in order to investigate whether mutual
invasibility regimes were indeed observed and vary the car-
rying capacities in each patch equally. The thresholds found
via homogenization technique are quite close to the ones
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Fig. 9 Top:  as a function of log(l). The gray colored region indi-
cates a competitive reversals in favor of IG prey. Bottom: Invasibility
regimes for different values of K̂ . The blue region is bounded below
by K̂1→(2R) for l ∈ [l̄−, l̄+] and by K̂2→R for other values of l; cyan
region is comprised by [l̄−, l̄+] × [K̂2→(1R), K̂1→(2R)]; gray region

is comprised by [l̄−, l̄+] × [K̂1→(R), K̂2→(1R)]; the pastel region is
the complementary in the (K̂ , log(l)) parameter space. Parameters
used: α1 = α2 = 0.25, β1 = β2 = 0.45, b11 = b12 = 0.8,
b21 = 0.85b22 = 0.6, δ11 = δ12 = 0.7 δ21 = 0.85δ22 = 0.5,
r1 = r2 = 1, 2D1 = D2 = 2DR = 1.4, α1 = αR = 1 − α2 = 0.45

observed numerically, andmutual invasibility showed to lead
to coexistence between IG prey and IG predator.

Now, in the case 1 < γ < w(qR, l∗, η1, η2) > and
(qr , δη) ∈ Hh , we have Fig. 11. The regions of mutual inva-
sibility (cyan colored) and IG prey dominance (gray colored)
only exist outside the range [l̄−, l̄], where  > 1 in the top
plot. Inside the interval [l̄−, l̄], only IG predator is able to
invade granted resource carrying capacity is high enough
(blue colored), where  < 1, while for low values of car-
rying capacity, only resource is established in the landscape
(pastel colored). This depicts a competitive reversal in favor
of IG predator.

Fig. 10 Numerically obtainedmaximumpopulation densities for l = 1.
The colored regions and parameters used are the same as in Fig. 9

Again, we compare the approximation in Fig. 11 with
numerical results in Fig. 12. For that, we let 10 pairs of
patches 1 and 2 of equal size (l1 = l2 = 1) in order to
investigate whether exclusion regimes were indeed observed
and vary the carrying capacities in each patch equally, as
before. The IG predator threshold found via homogenization
technique is quite close to the one observed numerically.

Discussion

In this work, we analyzed intraguild predation communi-
ties in homogeneous and heterogeneous landscapes, studying
consumer species invasion dynamics. In an homogeneous
landscape, we recover invasibility conditions as expected
in Holt and Polis (1997), while also numerically verified that
speeds of invasion are linearly determinate. In heterogeneous
environments, using an approximation technique, we found
competitive reversals between IGprey and IGpredatorsmod-
ulated by multiple factors.

In a homogeneous landscape, we have four possible inva-
sion regimes for when the IG prey is the best exploitative
competitor. First, neither of the consumers are able to invade,
given a really low carrying capacity, then, for higher car-
rying capacities, we have three distinct ranges: IG prey is
able to invade, mutual invasibility between IG prey and IG
predator, and IG predator invasions leading to IG prey exclu-
sion and preventing IG prey invasion. For the case where

123



    2 Page 14 of 16 Theoretical Ecology             (2025) 18:2 

Fig. 11 Top:  as a function of log(l). The gray colored region indi-
cates a competitive reversals in favor of IG prey. Bottom: Invasibility
regimes for different values of K̂ . The blue region is bounded below
by K̂1→(2R) for l ∈ [l̄−, l̄+] and by K̂2→R for other values of l; cyan
region is comprised by [l̄−, l̄+] × [K̂2→(1R), K̂1→(2R)]; gray region is

comprised by [l̄−, l̄+] × [K̂1→(R), K̂2→(1R)]; the pastel region is the
complementary in the (K̂ , log(l)) parameter space. Parameters used:
γ = 1.05, α1 = α2 = 0.25, β1 = β2 = 0.45, b11 = b12 = 0.8,
b21 = 0.85b22 = 0.6, δ11 = δ12 = 0.7 δ21 = 0.85δ22 = 0.5,
r1 = r2 = 1, 2D1 = D2 = 2DR = 1.4, α1 = αR = 1 − α2 = 0.45

IG predator is the best consumer, we only find two regimes,
either no consumer invades for really low carrying capacities
or IG predator invades for large enough carrying capaci-
ties, excluding IG prey whenever it is also present in the
landscape, or also preventing IG prey invasion. This is the
classical result of Holt and Polis (1997), now revisited in the
form of invisibility analysis of spatially structured popula-
tions.

Our numerical analysis of the homogeneous landscape
model suggests that the different speeds of invasion are
linearly determined for a large range of parameter val-

Fig. 12 Numerically obtainedmaximumpopulation densities for l = 1.
The colored regions and parameters used are the same as in Fig. 11

ues. This was somehow expected, because invasions in
consumer-resource models show linearly determinate speed
as well (Petrovskii and Malchow 2000, 1999; Lewis et al.
2016). We show that whenever a successful invasion leads to
a shift from the resident community fixed point to a different
stablefixedpoint (in the not spatially structuredmodel sense),
we usually have traveling wave solutions connecting these
fixed points. We also show that dynamical stability regions
can be formed when the coexistence fixed point is unstable,
but leave the precise conditions in which such dynamical
stability occurs for future research, possibly using the same
analysis as in Malchow and Petrovskii (2002), which gets
slightly more complicated in a three-species system.

We have chosen linear functional responses for predator–
prey dynamics, for both consumer-consumer or consumer-
resource predation. However, if consumer-resource relations
are type II Holing functions (Holling 1959), the single
consumer and resource equilibria can be unstable and
present oscillations, allowing for coexistence among two
consumers without intraguild predation relations (Klaus-
meier and Tilman 2002; Armstrong and McGehee 1980).
The invasibility analysis in this scenario, however, gets much
more complicated, and studying invasibility criteria, spread-
ing speeds, and regime shifts both with and without IGP
relations is a possible venue for future research.

The same invasibility regions found in homogeneous land-
scapes are found in periodic landscapes as well. However,
they depend on multiple factors, and competitive reversals
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might occur. Competitive reversals have also been observed
inmodels for interference competition in periodic landscapes
inMaciel et al. (2018) and depend exclusively on patchiness,
l, and competitor species movement behaviors. Here, we
show that, in exploitative competition, resource patch prefer-
ence is a key factor in order for competitive reversals to occur,
either favoring IGprey or IGpredator,whichever has its patch
preferencemore alignedwith resources or has a lowermortal-
ity rate in resource species favored patch, thereby facilitating
or hindering mutual invasibility regimes. Competitive rever-
sals can also occur if resource is unevenly consumed between
patches. When resource is much less consumed where one
of the consumers has a lower mortality rate, that consumer
is benefited and can possibly overcome the fact of being the
worst competitor. Similarly, competitive reversals occur if
either of the consumers has a higher patch preference for the
patch where resource is less consumed.

The observed competitive reversals show a mechanism of
bottom-up regulation of intraguild predation communities,
based on movement behavior of resource population (Holt
and Bonsall 2017). This allows us to question if top-down
regulations, based on predator patch preference, are possible
in apparent competition interactions. Consider an inva-
sive generalist predator that induces apparent competition
between species of the resident community. In homogeneous
landscapes, we expect the classical results of Holt (1977),
where prey species coexist at lower densities or that one
excludes the other. In heterogeneous landscapes, however,
consumer patch preference may shift expected exclusion
regimes into coexistence ones and vice-versa, while also
shifting exclusion of one prey species to the other. This
can be possibly verified in a similar framework as displayed
here, following Ovaskainen and Cornell (2003); Maciel and
Lutscher (2013) to describe species behavior at patch inter-
face and Yurk and Cobbold (2018); Cobbold et al. (2022)
to obtain approximate results, highlighting possible future
venues where this framework can be applied.

Our work shows that a landscape composed by differ-
ent patch types with similar lengths/areas, where species
can interact and live, can be either detrimental or bene-
ficial for biodiversity in intraguild predation communities
and has several implications in the context of biological
invasions or reintroduction. By mutual invasion facilita-
tion, we have possible coexistence regimes which would be
otherwise unattainable. For hindered mutual invasion condi-
tions, expected coexistence regimes might collapse, and IG
predator may become dominant even if IG prey is the best
competitor and carrying capacities are adequate in each of
the patch types isolated.
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