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Chrysomya albiceps invasion

In the 1970’s, Chrysomya albiceps, along
with other blowfly species, was introduced
in South America.
In the subsequent years, it proceeded to
invade most of South America, and had a
strong impact on native species.
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Life cycle

Life cycle: adults → eggs → larvae.
Adults have short life span (usually less than 2 weeks).
Females oviposit around 1 week after emergence, and at most
two times.
Larvae feed upon carrion and grow until emerging into an
adult.
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Prout Model

Population is limited by larval competition for carrion.
Not only survival, but also fecundity of the adult, are strongly
affected by density at larval stage.
Cannibalism in the larval stage also plays a role.
Prout introduced this two-stage discrete-time model for larvae
(v) and adults density (u) (Prout 1985):

ut = S∗vt e−svt

vt+∆t =
1
2F ∗ut e−fvt

S∗ and F ∗ are maximum survival and fecundity in abundant
meat, while f and s are density-dependent parameters.
∆t is the generational time, comprising egg to emergence plus
the time until female oviposition (egg-to-egg time).
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Ricker equation

We can rewrite the system as a single equation for larvae only,
yielding:

vt+∆t =
1
2S∗F ∗vt e−(s+f )vt

This is the well-known Ricker equation (Ricker 1954).
Parameters are as before. It’s important to notice that all of
them can be directly measured in laboratory.
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Spread in discrete time evolution

In order to introduce spatial dynamics, we employ a
redistribution kernel K (δ) (Kot 1992).
It can be thought of as the probability of an individual at x to
be at x + δ after the dispersal stage. So the equation for a
population which only spreads is

ut+∆t(x) =

∫ +∞

−∞
ut(x + δ)K (δ)dδ

To conserve the total population, K has to be normalized, i.e.,∫∞
−∞ K = 1.
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Spread in discrete time evolution
Brownian movement

We assume a simple Brownian motion for the movement of
flies.
This leads to a Gaussian redistribution kernel:

K (δ) =
1

σ
√
π

e−δ2/σ2

Here σ is the key parameter that measures the distance of
spread in one generation.
Adults can be thought of as agents of spread only, and the
spread distance is, in fact, how far they lay eggs.
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The model

Plugging the Ricker equation discussed earlier into the
dispersal equation, we arrive at

vt+1(x) =
F ∗S∗
2σ
√
π

∫ +∞

−∞
vt(x + δ) e−(s+f )vt (x+δ) e−δ2/σ2dδ

Next, we will discuss the dynamical behavior implied by this
model.
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Complex spatio-temporal dynamics

Figure: Population density evolution, with
F ∗S∗ = 57, s + f = 0.5 and σ = 0.1, starting
from a small, localized initial condition.

The (non-spatial) Ricker
equation, is known to
present a bifurcation route
(period-doubling) to chaos.
With space dynamics
included, we see a complex
behavior of solutions, which
oscillate irregularly in both
space and time.
Although mathematically
exciting, this is not
observable in field
measurements due to the
coarse-grained nature of the
data.
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Invasion front: constant velocity

We are interested in the study of a
process of invasion.
The solution defines a front of
invasion, separating a region
without blowflies, and another with
them.
After a few generations, the front
attains a constant velocity.
We analyse the dependence of the
velocity on the parameters.
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Figure: Successive population
densities showing the front of
invasion.
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Dependence on F ∗S∗

Figure: Propagation speed as a function of
the parameter’s product F ∗S∗. Here
σ = 0.1 and s + f = 0.5.

The velocity c
increases with the
linear coefficient of
the growth function.
It can be shown that
c ∝
√

F ∗S∗.
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Dependence on σ and f + s

Since the only spatial scale is defined by σ, it’s to be expected
that the velocity is proportional to it. That’s indeed the case.
By taking f and s constant, we are assuming a homogeneous
medium.
This assumption can only be valid at large scales – of
hundreds of kilometers.
But these parameters have no impact on the velocity of
invasion.
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Physiological data

The fertility and survival data were taken from the literature
(Godoy et. al. 2001).
Larval development time is dependent on temperature. We
considered average temperatures in the region ranging from
17 to 25oC . The time until oviposition ranges from 5 to 10
days, giving a total egg-to-egg time between 15 and 35 days
(Al-Misned et. al. 2002).
The ranges of parameters are summarized below.

F ∗ 150 – 300
S∗ 0.4 – 0.6
∆t 15–35 days



The System and the Model Dynamics Parameterization and conclusions

Capture-recapture experiment
Measuring spread in one generation

Capture-recapture
experiment was performed in
1982 in a national park in
South Africa (Braack 1986).
16,000 radioactively marked
flies were released from a
central point, and
recaptured 5 to 7 days later
in traps distributed through
the park.
0.82% were recaptured.

Figure: Map of the northern Kruger National
Park to show Central Release Point of
radioactive flies and positions of traps for
subsequent recapture of blowflies.
Reproduced from (Braack 1986).
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Capture-recapture experiment
Reworked data
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Figure: Least squares fit of one-generation
dispersal data.

We reworked published
data, to compensate for
measure effort.
For each range of
distance, we calculate
number of recaptures /
(Area × number of
traps).
Then we fit a Gaussian
to the (mirrored)
histogram. We obtain a
value for σ between
7− 14km.
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A prediction for velocity

We have completely parameterized the model, and are able to
calculate a “prediction” for the invasion velocity.

With the ranges of parameters taken into account, this yields a
velocity of 1.2km/day ± 0.9.
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Observed data in South America invasion

Historical observations (Baumgartnet and Greenberg 1984)
allow us to determine roughly the date of arrival of Chrysomya
albiceps at several locations. This provides an approximate
observed velocity for the invasion front.

The velocity observed was of 1.5− 1.8km/day .

So, we have a reasonable agreement with the expected velocity
from the model.
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Summary

We build a model for blowfly invasion.
This model is parameterized with laboratory and field data.
We compare the invasion velocity so predicted with
observational data, and obtain good agreement.

It’s feasible to get realistic predictions using data from lab
experiments, as long as one takes into account the variability that
may exist in the population.
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Thanks for your attention!
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