Prova substitutiva de Cálculo Numérico Primeiro trimestre de 2012 prof. Rodrigo Fresneda

Avisos:

- Sempre que puder, justifique as passagens efetuadas, demonstrando conhecimento sobre os resultados e teoremas discutidos em sala. Poucas questões bem resolvidas valem mais que muitas mal resolvidas.
- Resolva as questões na ordem que lhe convier, mas indique na folha de resposta a questão e item sendo resolvidos.
- Não é permitida a consulta a material externo, incluindo seu colega.
- Esta prova vale 10 pontos.
- 1. Seja ξ uma raiz da equação f(x) = 0. Supomos que f(x), f'(x) e f''(x) sejam contínuas e limitadas num intervalo fechado I contendo ξ e que $f'(\xi) = 0$ e $f''(\xi) \neq 0$.
 - (a) (1.0 ponto) Mostre que o método iterativo definido por

$$x_{k+1} = x_k - 2\frac{f(x_k)}{f'(x_k)}$$

converge para ξ se $x \in I$.

(b) (1.0 ponto) O método definido em a) estende-se para uma raiz de multiplicidade m da seguinte maneira:

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}$$

Calcular a raiz ξ próxima de 1 da equação:

$$f(x) = x^4 - 3.1x^3 + 2.52x^2 + 0.432x - 0.864 = 0$$

com erro relativo inferior a 10^{-3} , usando método descrito aqui e sabendo que $f(\xi) = f'(\xi) = f''(\xi) = 0$ e $f'''(\xi) \neq 0$.

2. (2.0 pontos) Seja A uma matriz de ordem n. Podemos encontrar A^{-1} , a inversa de A, resolvendo o conjunto de sistemas lineares

$$Ax^{(i)} = e^{(i)}, i = 1, ..., n,$$

em que os vetores $e^{(i)}$ são as colunas da matriz identidade de ordem n e os vetores $x^{(i)}$ são as colunas de A^{-1} . Utilizando decomposição LU, inverta a matriz

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right)$$

3. (2.0 pontos) Supomos que o sistema linear

$$x_1 - \alpha x_2 = c_1$$

$$-\alpha x_1 + x_2 - \alpha x_3 = c_2$$

$$-\alpha x_2 + x_3 = c_3$$

seja resolvido iterativamente pelas fórmulas

polinômios ortonormais segundo o produto escalar

$$x_1^{(k+1)} = \alpha x_2^{(k)} + c_1$$

$$x_2^{(k+1)} = \alpha \left(x_1^{(k)} + x_3^{(k)} \right) + c_2$$

$$x_3^{(k+1)} = \alpha x_2^{(k)} + c_3$$

Para que valores de α a convergência do método acima é garantida? Justifique.

] 	\boldsymbol{x}	-1	0	1	2	. utilizando	
	y	0	-1	0	7	, utilizalido	

$$(p,q) = \sum_{i=0}^{3} p(x_i) q(x_i),$$

em que x_0, x_1, x_2, x_3 são pontos da tabela e p(x) e q(x) são polinômios de grau no máximo 3.

5. Considere a integral

$$I\left(a\right) = \int_{0}^{a} x^{4} e^{-x} dx$$

- (a) (1.0 ponto) Obtenha I(1) com erro inferior a 10^{-2} usando a regra de Simpson 3/8.
- (b) (1.0 ponto) Calcule exatamente $I(\infty)$, a menos de erros de arrendondamento, usando quadratura gaussiana.

Formulário

Fórmula do erro na interpolação:

$$f(x) - p_n(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi), \ x_0 < \xi < x_n$$

Fórmula do erro na integração de Newton-Cotes:

$$R(f) = \frac{h^{n+2} f^{(n+1)}(\xi)}{(n+1)!} \int_0^n u(u-1) \cdots (u-n) du \text{ para } n \text{ impar, } a < \xi < b$$

$$R(f) = \frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_0^n \left(u - \frac{n}{2}\right) u(u-1) \cdots (u-n) du \text{ para } n \text{ par, } a < \xi < b$$

				Polinômios de Chebychev $\omega\left(x\right)=\left(1-x^{2}\right)^{-1/2},\left[a,b\right]=\left[-1,1\right]$			
P_n	raízes	pesos	T_n	zeros	pesos		
P_2	± 0.5773502691	$0.10000000000 \times 10^{1}$	T_2	± 0.7071067811	$0.1570796326 \times 10^{1}$		
P_3	± 0.7745966692	0.555555555	T_3	± 0.8660254037	$0.1047197551 \times 10^{1}$		
	0.0000000000	0.88888888		0.0000000000	$0.1047197551 \times 10^{1}$		
P_4	± 0.8611363115	0.6521451548	T_4	± 0.9238795325	0.37853981633		
	± 0.3399810435	0.3478548451		± 0.3826834323	0.37853981633		

Polinômios de Laguerre $\omega\left(x\right)=e^{-x},\left[a,b\right]=\left[0,\infty\right]$					
L_n	zeros	pesos			
L_2	0.5857864376	0.8535534	Polinômios de Hermite $\omega\left(x\right)=e^{-x^{2}},\left[a,b\right]=\left[-\infty,\infty\right]$		
	$0.3414213562 \times 10^{1}$	0.1464466094	H_n	zeros	pesos
L_3	0.4157745567	0.7110930099	H_2	± 0.7071067811	0.8862269254
	$0.2294280360 \times 10^{1}$	0.278517735	H_3	$\pm 0.1224744871 \times 10^{1}$	0.2954089751
	$0.6289945082 \times 10^{1}$	$0.1038925650 \times 10^{-1}$		0.0000000000	$0.1181635900 \times 10^{1}$
L_4	0.3225476896	0.6031541043	H_4	$\pm 0.1650680123 \times 10^{1}$	$0.8131283544 \times 10^{-1}$
	$0.1745761101 \times 10^{1}$	0.3574186924		± 5246476323	0.8049140900
	$0.4536620296 \times 10^{1}$	$0.3888790851 \times 10^{-1}$		1	
	$0.9395070912 \times 10^{1}$	$0.5392947055 \times 10^{-3}$			