Bacharelado em Ciência e Tecnologia

BCM0505 Universida Processamento da Informação

Introdução a programação de computadores Introduction to computer programming

Prof. Rogério NevesRogerio.neves@ufabc.edu.br

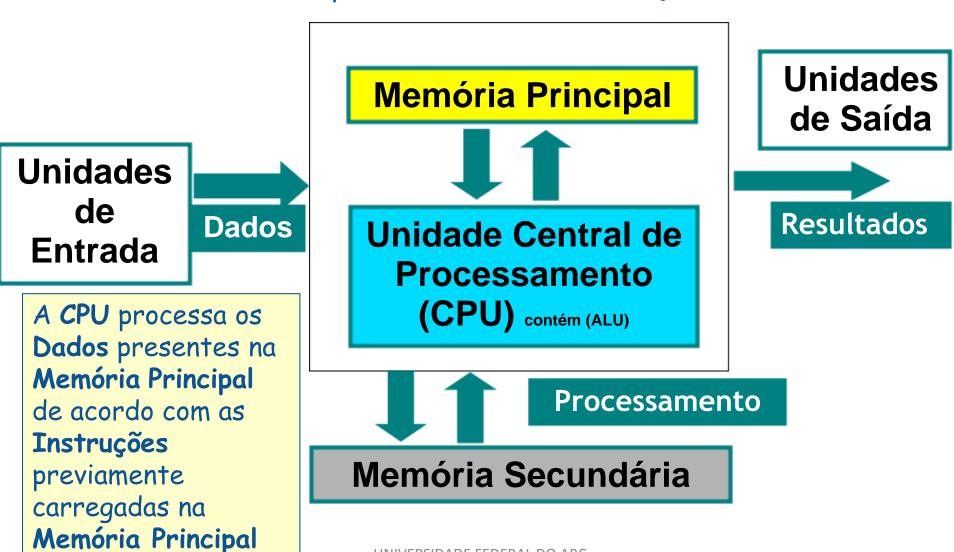
1° Quadrimestre de 2016

Hardware Versus Software

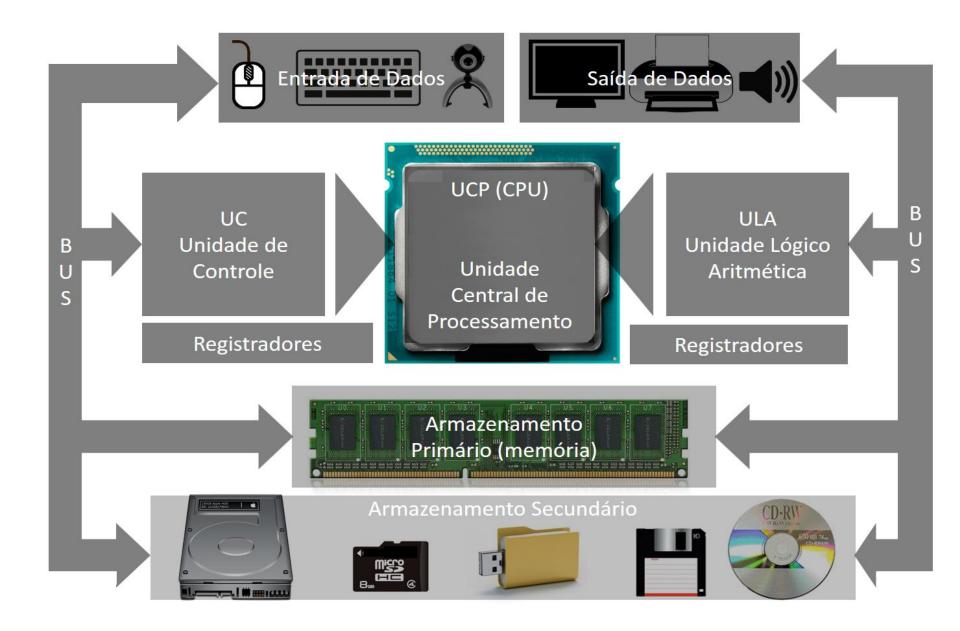
Hardware

Physical part
Support for input/output
and processing of data

Software


Everything else electronic/magnetic information:

programs data


Arquitetura Von Neumann (1936)

A Memória Principal armazena tanto Instruções como Dados

UNIVERSIDADE FEDERAL DO ABC

Von Neumann Architecture

Von Newmann Devices

Kinds of Software

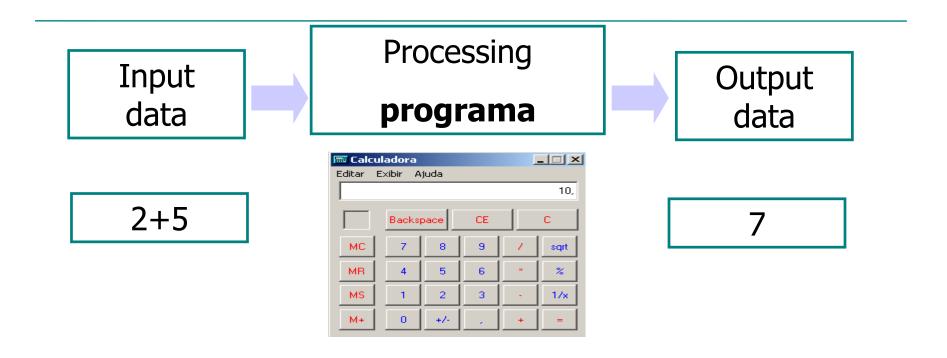
- OS (Operational System) sistema operacional
 - Windows, Linux, iOS, Android, etc.

Applications

- Word processors Editores de texto: Word, WordPerfect, etc.
- Spreadsheets Planilhas eletrônicas: Excel, Lotus 123, etc.
- Presentations: PowerPoint, etc
- Drawing Desenho: PaintBrush, CorelDraw, etc

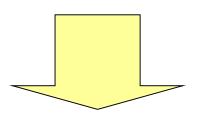
Specific:

Folha de Pagamento, Sistemas de Vendas, Sistema Acadêmico, etc.


• Data:

MP3, DOC, JPG, PNG, AVI, PPT, etc.


SOFTWARES ←→ PROGRAMAS DE COMPUTADOR

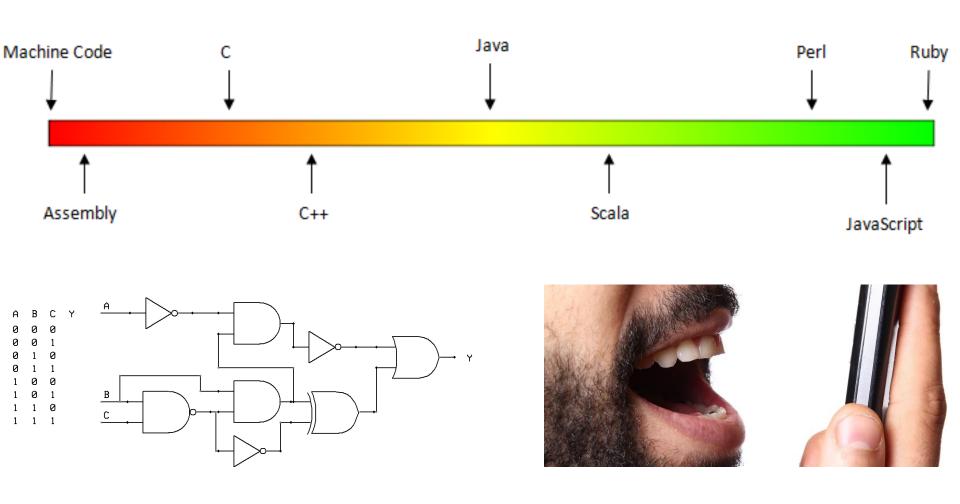

DEFINITION OF PROGRAM

A sequence of instructions (commands) which, operating from a given input data, generate a specific result made available to some output

How *softwares* are made?

Programming languages

A **programming language** can be defined as:


- ▶limited set of symbols and commands, used to write programs;
- > standardized method to give instructions to a computer;

➤ Man-machine Interface, allowing men to express what they want the machine to do.

Uma <u>linguagem de programação</u> pode ser definida como:

- conjunto limitado de símbolos e comandos, utilizados para escrever programas;
- > método padronizado para expressar instruções para um computador;
- ➤ por meio dela se estabelece uma comunicação Homem-computador, fazendo com que ele compreenda e execute o que o programador quer.

High, mid and low-level languages

Linguagens de Programação

- Linguagens de alto nível apresentam uma "sintaxe" mais próxima da linguagem natural (humana)
- Usam palavras reservadas extraídas do vocabulário corrente (int, public, if, else, while, ...)
- O que faz o programa abaixo (em linguagem java) ?

```
class HelloWorld {
   public static void main (String[] args) {
      System.out.println ("Hello world!");
   }
}
```

High level Languages Linguagens de Alto Nível

				T .	
1957	FORTRAN	1975	Pascal	1986	CLP(R)
1958	ALGOL	1975	Scheme	1986	Eiffel
1960	LISP	1977	OPS5	1988	CLOS
1960	COBOL	1978	CSP	1988	Mathematica
1962	APL	1978	FP	1988	
1962	SIMULA	1980	dBase II		Oberon
1964	BASIC	1983	Smalltalk	1990	Haskell
1964	PL/1	1983	Ada	1995	Delphi
1966	ISWIM	1983	Parlog	1995	Java
1970	Prolog	1984	Standard ML	•	
1972	С	1986	C++	-	

Linguagens de Programação Compiladas

 Os programas escritos em linguagens de alto nível são convertidos para a linguagem de máquina através de um programa compilador, ou de um interpretador

Linguagem de Alto Nível (Hi-level)

Compiller interpretador de Máquina (Machine code)

Trataremos de "Compiladores" e "Interpretadores" mais adiante"

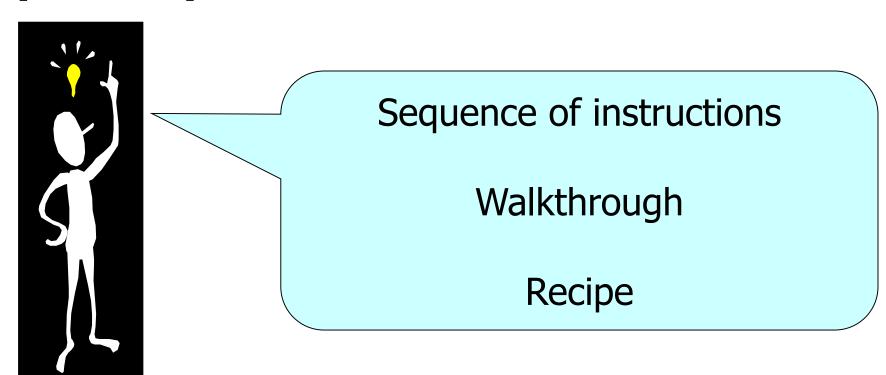
Programming:
Programando:
Where to start?
Por onde começar?

Programming logic!

Lógica de programação

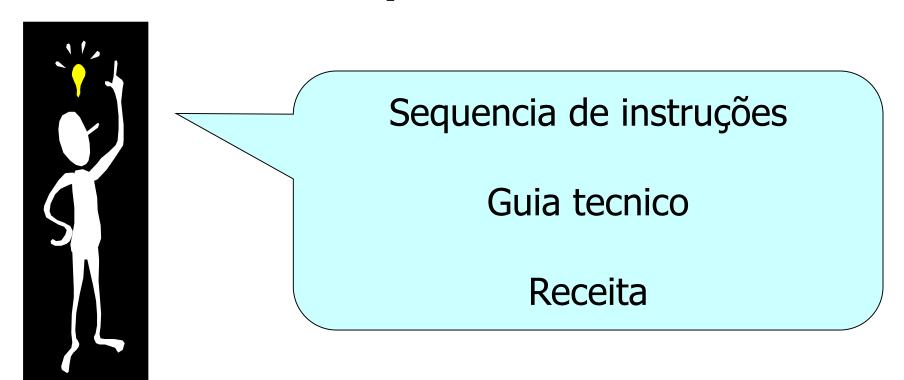
Aprendendo a Programar Computadores

- O principal componente de um programa de computador é a sua "lógica", ou seja, o que o "computador deve fazer" para resolver um problema.
- Assim, é mais fácil aprender a programar (organizar a lógica) numa linguagem de "alto nível"
- Qual é a linguagem de mais alto nível para um ser humano que fala naturalmente o Português?


Aprendendo a Programar Computadores

- Parece mais simples dar os primeiros passos na arte de programar computadores, numa linguagem mais próxima da "linguagem natural"
- Assim, o caminho que parece mais tranquilo é através de <u>ALGORITMOS</u>.

Algorithms


DEFINITION

<u>Algorithm</u>: A finite sequence of instructions, ordered in a logic fashion in order to solve a particular problem or task

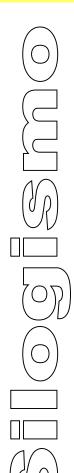
ALGORITMO - DEFINIÇÃO

<u>Algoritmo</u>: Uma seqüência finita de instruções, ordenada de forma lógica para a resolução de uma determinada tarefa ou problema

LÓGICA - LOGIC

Senso comum – common sense:

Obviously


$$Logica \Rightarrow Logos + Ica (latin)$$

Reason Science

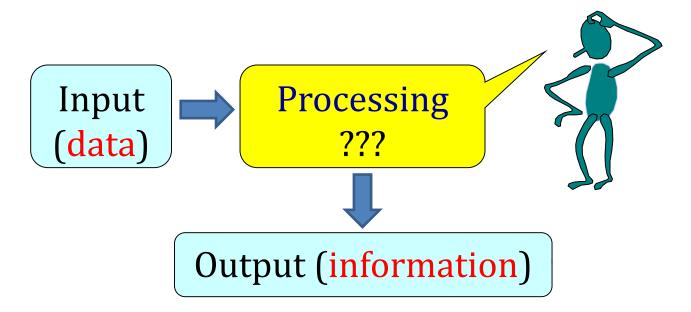
- Estuda o raciocínio/pensamento humano;
- Ciência dos argumentos.
 - •Argumento é uma sequência de enunciados, na qual um dos enunciados é a conclusão, derivado a partir dos outros enunciados **premissas**.

Todas as baleias são mamíferos. (premissa 1)

Alguns animais são baleias. (premissa 2)

Logo, alguns animais são mamíferos. (conclusão)

Raciocínio certo, baseado em premissas corretas

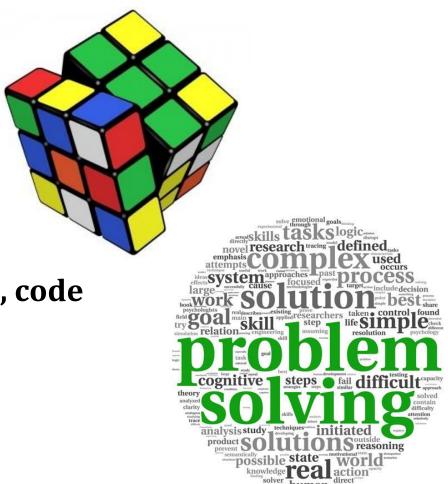

Todos os peixes vivem na água. (premissa1)

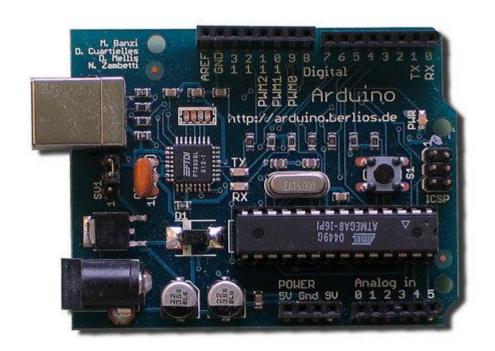
Golfinhos são peixes. (premissa 2)

... Golfinhos vivem na água. (conclusão)

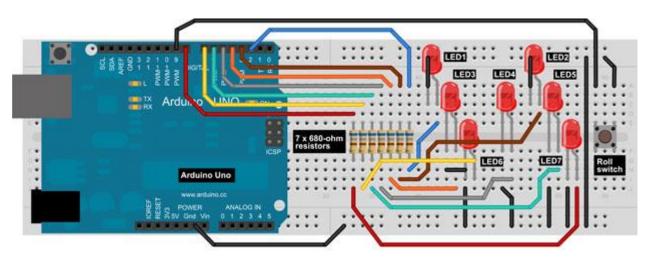
Tanto a forma de argumento quando a conclusão são verdadeiras, apesar de esta última ter sido deduzida a partir de uma premissa falsa ("golfinhos são peixes").

THINKING LIKE A PROGRAMMER




- Lógica de programação
- raciocínio que precisamos desenvolver
- para resolver um problema
- encadeando pensamentos
- para atingir determinado objetivo

PROBLEM SOLVING


- The main ability of a programmer
- Formulate questions
- Creative thinking
- Express clear solutions
 - Diagrams, flowcharts, code
- Solve problems

PROBLEM SOLVING

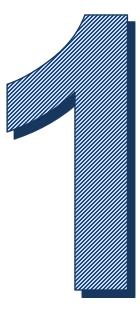

```
// configuration
const byte
              LED_PIN
                         = 12;
unsigned long DELAY_TIME = 200;
const int
             ITERATIONS = 5;
void setup ()
  Serial.begin (115200);
  pinMode (LED_PIN, OUTPUT);
  } // end of setup
void loop ()
  for (int i = 0; i < ITERATIONS; i++)
    digitalWrite (LED_PIN, HIGH);
   delay (DELAY_TIME);
   digitalWrite (LED_PIN, LOW);
   delay (DELAY_TIME);
    } // end of for
   // end of loop
```


EXAMPLES

SOLVED PROBLEMS:

http://professor.ufabc.edu.br/~rogerio.neves/info/

ALGORITHM


Representation of a solution to a given problem Through a sequence of steps

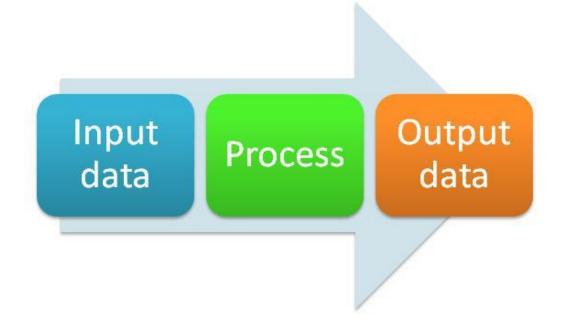
- Examples:
 - Receipts
 - Technical Manuals
 - Assembly Guides
 - Programs

PROBLEM

Chocolate cake

1st: What is the desired output?

OUTPUT - SAÍDA


2nd: What is the input?

Input (ingredients) (insumos) What do I need?

3rd: Processing

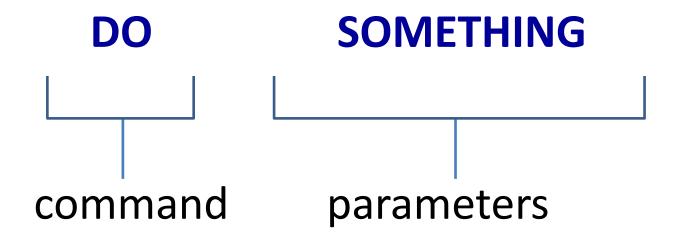
What are the steps to go from (input) to (output)

ALGORITMO - EXEMPLO

Ingredientes:

- ❖5 ovos
- ❖250 gramas de margarina cremosa
- 2 xícaras (chá) de açúcar
- 1 xícara (chá) de farinha de trigo
- ❖1 xícara (chá) de chocolate
- ❖200 gramas de côco ralado
- *1 copo de leite
- ❖1 colher (sopa) de fermento

ALGORITMO - EXEMPLO


Processamento

Modo de Preparo:

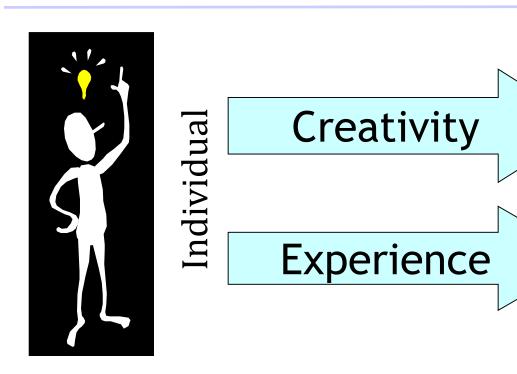
- ❖ Bata a margarina, as gemas e o açúcar até ficar cremoso
- ❖ Junte o leite, o côco e a farinha e continue batendo
- Acrescente o fermento e, por último, as claras em neve
- ❖ Unte uma forma com manteiga e leve ao forno para assar

^{*} Repare o verbo no imperativo ou infinitivo, caracterizando um comando

COMMANDS

COMMANDS

DO something with something else command parameters


Um algoritmo para realizar a troca de uma lâmpada

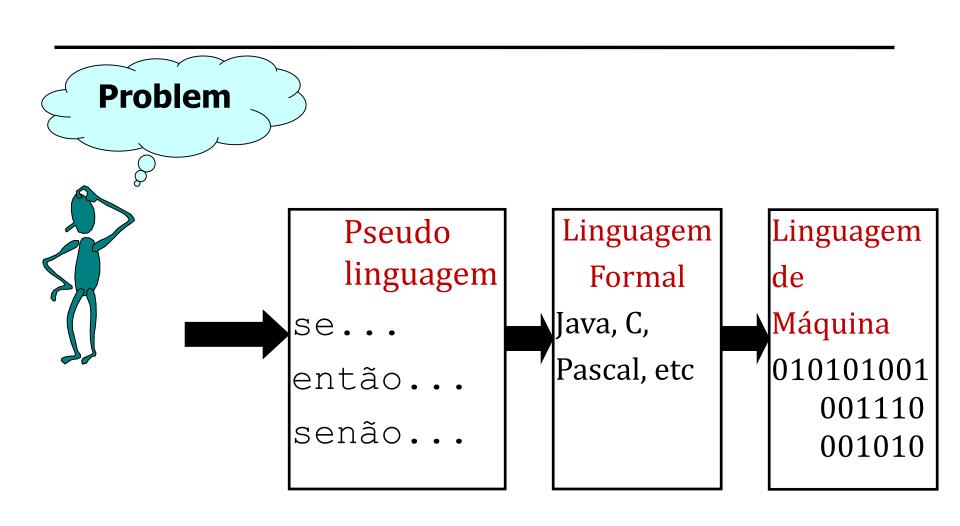
- Pegue uma escada
- Posicione a escada embaixo da lâmpada
- Busque uma lâmpada nova
- Suba na escada
- Retire a lâmpada velha
- Coloque a lâmpada nova

E se a lâmpada não estiver queimada?

- 1. Acionar o interruptor
- 2. Se a lâmpada não acender, então
 - ◆ Pegue uma escada
 - ◆ Posicione a escada embaixo da lâmpada
 - ◆Busque uma lâmpada nova
 - ◆ Suba na escada
 - ◆ Retire a lâmpada queimada
 - ◆ Coloque a lâmpada nova

- Each person thinks differently
- SO, there are several ways to solve a problem
- SO, several different algorithms
- All are correct, if they lead to the objective

EFFICIENT CODING


Efficiecy:

- Quick implementation
- Faster execution
- Less code
- Less effort
- Objectivity

PSEUDOCODE - PSEUDOLINGUAGEM

PSEUDOLINGUAGEM

Quando da definição de uma linguagem, precisamos definir:

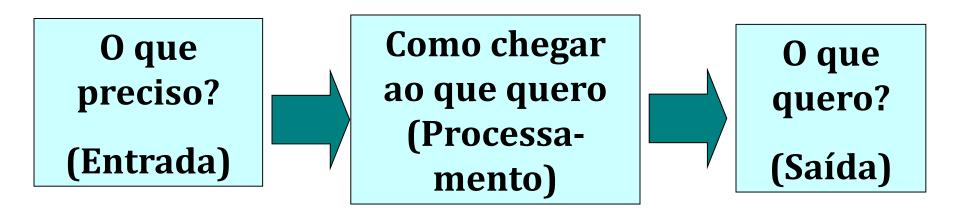
- Sua sintaxe: como escrever os comandos e seus componentes
- Sua semântica: o significado de cada comando e conceito
- A <u>sintaxe</u> e a <u>semântica</u> de uma linguagem (ou pseudolinguagem) devem considerar vários tipos de "ações", como por exemplo:
 - Declarações de Variáveis
 - Operadores
 - Comandos de entrada e de saída
 - Comandos de seleção, repetição, etc.

BLOCO DE EXECUÇÃO

- Bloco de execução é um conjunto de ações que possui uma função bem definida
- O início de um bloco é marcado pela palavra início
- O fim de um bloco é marcado pela palavra fim

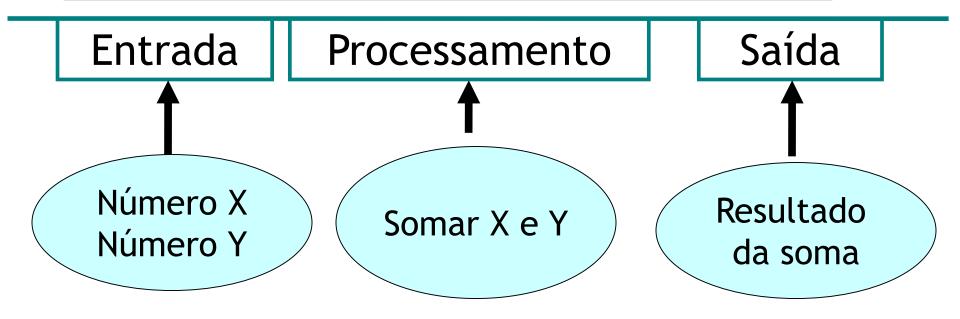
BLOCO DE EXECUÇÃO

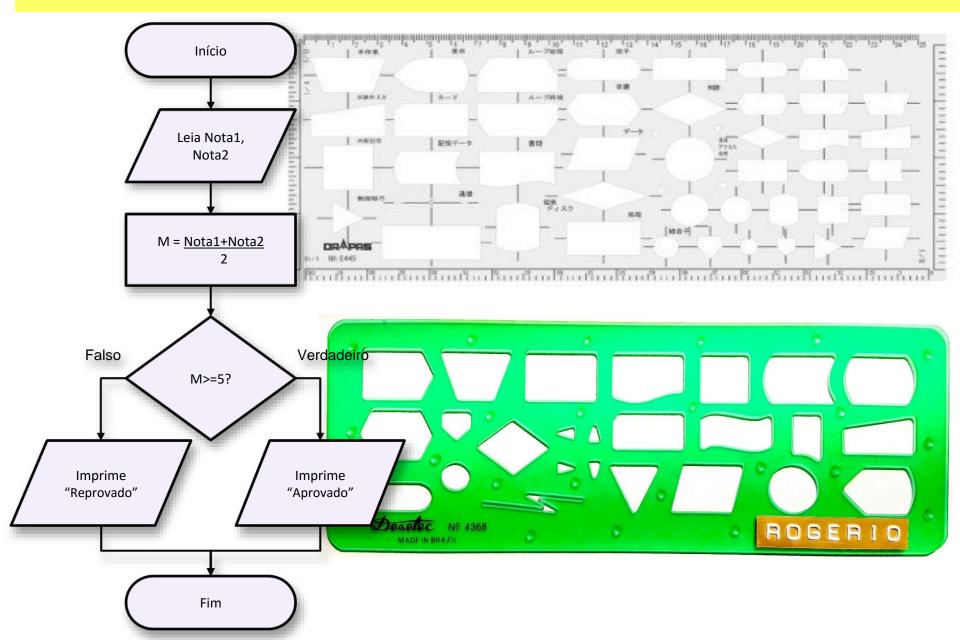
O próprio algoritmo é um bloco de execução. A sintaxe da definição do bloco de um algoritmo é:


ALGORITMO – PASSOS PARA CONSTRUÇÃO

 Identificar o problema (objetivo) mediante leitura atenta de seu enunciado (entendimento)

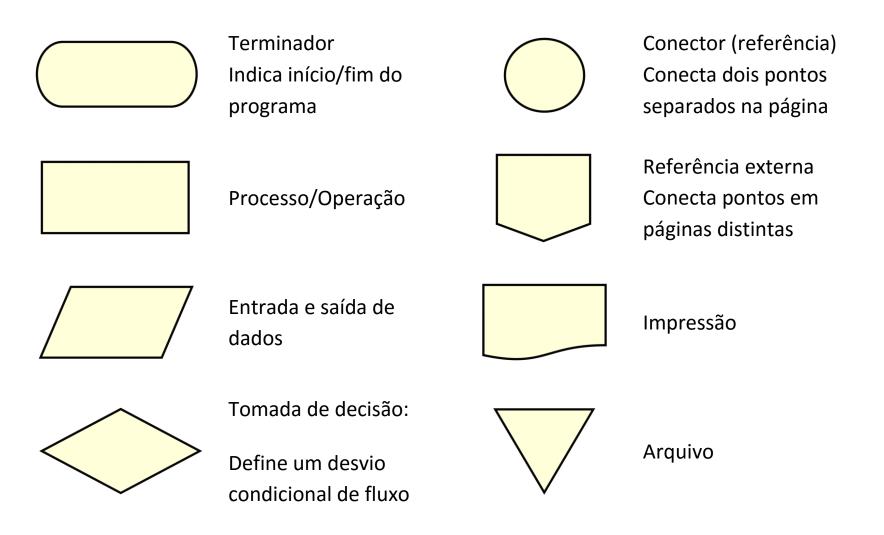
- Identificar no enunciado os dados a serem fornecidos para o algoritmo (entrada de dados)
- Identificar os resultados que devem ser gerados na solução (saída de dados)
- Determinar o que deve ser feito para transformar as entradas nas saídas desejadas (processamento)


ALGORITMO – PASSOS PARA CONSTRUÇÃO


ALGORITMO - EXEMPLO

Escreva um algoritmo para somar dois números quaisquer

- 1. Leia o número X
- 2. Leia o número Y
- $3. \text{ Some } X \in Y$
- 4. Mostre o resultado da soma



FLOWCHARTS - FLUXOGRAMAS

FLOWCHARTS - FLUXOGRAMAS

Tabela 1: Alguns símbolos de fluxogramas

LEITURAS SUGERIDAS

FORBELLONE, A. L. V.; EBERSPACHER, H. F., Lógica de Programação – A Construção de Algoritmos e Estruturas de Dados, Prentice Hall, 20??

• CAPÍTULO 1 - Introdução a Lógica de Programação

Exercícios de Lógica

Exercício

Um lobo, uma cabra e uma couve têm de atravessar um rio num barco que transporta um de cada vez, incluindo o barqueiro. Como é que o barqueiro os levará para o outro lado de forma que a cabra não coma a couve e o lobo não coma a cabra?

Exercício

Eram dois homens que iam por um caminho. Um levava 8 litros de vinho em um barril e o outro levava 8 litros de vinho em dois garrafões, um de cinco litros e um de três. Beberam o vinho do barril de 8 litros e agora querem dividir os 8 litros de vinho restante igualmente, entretanto, eles só podem usar como medida, os próprios garrafões e o barril: 8, 5 e 3 litros. Como fazer?

Exercício

Eram dois homens que iam por um caminho. Um levava 8 litros de vinho em um barril e o outro levava 8 litros de vinho em dois garrafões, um de cinco litros e um de três. Beberam o vinho do barril de 8 litros e agora querem dividir os 8 litros de vinho restante igualmente, entretanto, eles só podem usar como medida, os próprios garrafões e o barril: 8, 5 e 3 litros. Como fazer?

- 1. Encher a vasilha de 3 litros.
- 2. Passar os 3 litros para a vasilha de 5 litros.
- Encher outra vez a vasilha de 3 litros.
- 4. Encher a vasilha de 5 litros com a de 3, sendo que sobrará 1 na de 3.
- 5. Esvaziar a de 5 no barril.
- 6. Passar o litro da vasilha de 3 na de 5.
- 7. Encher a de 3 e esvaziar na de 5, que como já tinha 1, terá 1+3 = 4.
- 8. Deixar o barril com 4 litros para o amigo.

Exercícios de "Algoritmos"

Exercícios

Descreva a sequência de passos necessária para:

- ☐ Fritar um ovo
- ☐ Trocar um pneu furado
- □ Colocar um carro em movimento
- □ Jogar o jogo da velha

Algoritmos

- ☐ Conceitue Algoritmo (com suas palavras)
- ☐ Quais as "três" partes de um algoritmo?
- □ Como são compostas as "frases" (instruções) de um algoritmo?

Algoritmo - Exemplo

Fritar um ovo:

- 1. Pegue a frigideira, ovo, óleo e sal
- 2. Coloque o óleo na frigideira
- 3. Acenda o fogo
- 4. Coloque a frigideira no fogo
- 5. Espere o óleo esquentar
- 6. Quebre o ovo
- 7. Despeje o ovo no óleo quente
- 8. Coloque o sal
- 9. Retire quando estiver pronto
- 10. Desligue o fogo

Exercícios

Escreva um algoritmo para fazer uma ligação telefônica.

5 minutos

Algoritmos Computacionais

Algoritmo - Exemplo

Calcular a média aritmética a partir de 3 notas.

Identificando a solução: ENTRADA, PROCESSAMENTO, SAÍDA!

Qual a <u>SAÍDA</u> de Dados?
 [que resultado o algoritmo dever produzir?]

média

Qual a <u>ENTRADA</u> de Dados?

[quais os insumos necessários para produzir a saída?]

3 notas (nota1, nota2, nota3)

Algoritmo - Exemplo

Calcular a média aritmética a partir de 3 notas.

Qual o <u>PROCESSAMENTO</u> necessário?

[para transformar as 3 notas na média?]

- Somar as 3 notas (soma = nota1 + nota2 + nota3)
- Dividir a soma por 3 (media = soma / 3)

 O passo seguinte é organizar as "instruções" numa sequência coerente:

Entrada, Processamento e Saída

Escrevendo Algoritmos

- ☐ Quais as "instruções" necessárias para fazer:
 - ☐ ENTRADA DE DADOS ?
 - **□** PROCESSAMENTO?
 - ☐ SAÍDA DE DADOS ?
- □ Para começar vamos aprender as instruções em na linguagem "PORTUGOL"
 - □ PORTUGOL = "Português" + "Algoritmo"
- ☐Comecemos pelo mais simples:
 - **SAÍDA DE DADOS**

SAÍDA DE DADOS

Saída de Dados

- EXIBE UMA MENSAGEM OU RESULTADO PARA O USUÁRIO NA TELA DO COMPUTADOR.
- A instrução para saída de dados em "PORTUGOL" é:

```
escreva ( < mensagem>, <identificador>)
```

EXEMPLO:

- escreva("Alô Mundo")
- escreva("A soma é igual a", soma)

ENTRADA DE DADOS

Entrada de Dados

- INTERAGE COM O "TECLADO" DO COMPUTADOR OBTENDO INFORMAÇÕES QUE O USUÁRIO DIGITA
- A instrução para entrada de dados em "PORTUGOL" é: leia (<identificador>)

EXEMPLO:

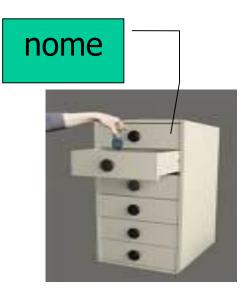
- leia (nota1)
- ATENÇÃO: Qualquer "dado" digitado no teclado precisa ser armazenado na memória do computador!
- Para tal, faz-se necessário a RESERVA DE MEMÓRIA através de DECLARAÇÃO DE VARIÁVEIS

DECLARAÇÃO DE VARIÁVEIS

(reserva de memória)

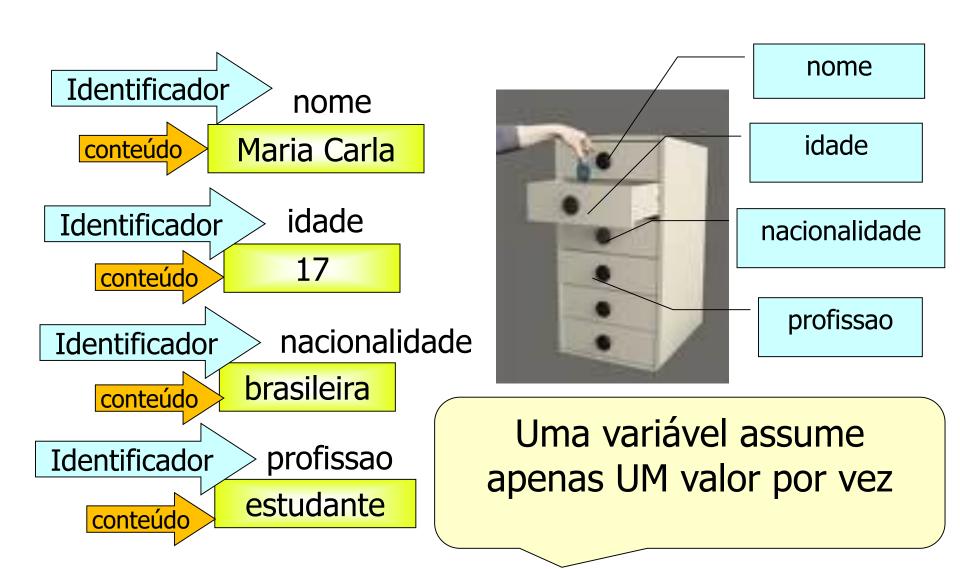
PSEUDOLINGUAGEM - VARIÁVEIS

As linguagens de programação permitem que os usuário **atribuam nomes (identificadores)** para as posições de memória da máquina


Armário ↔
Memória do computador

nacionalidade

profissao


PSEUDOLINGUAGEM - VARIÁVEIS

Uma variável é um endereço da memória RAM, representada por um <u>identificador</u> (nome da variável), criado pelo usuário, cujo conteúdo pode se alterar no decorrer da execução do programa

- Uma variável é composta por dois elementos:
 - * Identificador: nome dado pelo programador à variável
 - * Conteúdo: valor atual da variável

PSEUDOLINGUAGEM - VARIÁVEIS

Declarando Variáveis

- □ Ao declarar uma <u>variável</u> é necessário informar ao computador que <u>tipo de dado</u> aquela "gaveta" pode armazernar
- ☐ Os <u>tipos de dados</u> básicos são:
 - Inteiro
 - Real
 - caracter

Forma Geral:

<ldentificador>: <tipo_de_dado>

Exemplos:

- Idade: inteiro
- nota1, nota2, nota3: real

PROCESSAMENTO OPERADORES BÁSICOS

Processamento: Operações

- O processamento de dados geralmente são realizados com o uso de operadores
- ☐ Os símbolos dos operadores aritméticos são:
 - adição → +
 - subtração → -
 - multiplicação → *
 - divisão → /
- ☐ Um operador importante é o de <u>operador de atribuição</u> que possibilita armazenar "valores" e "resultados" nas variáveis
- □ O símbolo do **operador de atribuição** é ←
 - Dependendo da linguagem de programação usa-se o "igual" (=)

Exemplos de Operações

$$x \leftarrow a + b$$

$$z \leftarrow y/x$$

Algoritmo - Exemplo

Calcular a média aritmética a partir de 3 notas.

nota1, nota2, nota3, soma, media: real

- 1. Leia (nota1)
- 2. Leia (nota2)
- 3. Leia (nota3)
- 4. soma ← nota1 + nota2 + nota3
- 5. media ← soma / 3
- 6. Escreva (media)

Note que para as operações <u>não</u> é necessário o uso de um verbo imperativo

Algoritmo

- Nas primeiras aulas vamos utilizar um Software chamado VisualG
- O VisualG EDITA, INTERPRETA e EDITA programas em pseudocódigo
- Depois vamos migrar para o JAVA
- O VisualG está disponível no Tidia-Ae (PI-2012-Geral)
- Pode ser baixado em sua página oficial: http://www.apoioinformatica.inf.br/visualg/objetivos.htm

Exemplo no VisualG (Interpretador)

 □ O VisualG é um software interpretador de programas escritos em PORTUGOL

```
Arquivo Editar Exibir Algoritmo Código Ferramentas Ajuda
algoritmo "media aritmetica"
                                            Declaração de
    var
      nota1, nota2, nota3, soma, media: real
                                              Variáveis
    inicio
      Leia (nota1)
      Leia (nota2)
      Leia (nota3)
      soma <- nota1 + nota2 + nota3
      media <- soma / 3
      Escreva (media)
    fimalgoritmo
```

Algoritmo – Solução mais amigável

Calcular a média aritmética a partir de 3 notas.

nota1, nota2, nota3, soma, media: real

- 1. Escreva("Digite a primeira nota:")
 Leia (nota1)
- 2. Escreva("Digite a segunda nota:")
 Leia (nota2)
- 3. Escreva("Digite a terceira nota:")
 Leia (nota3)
- 4. soma \leftarrow nota1 + nota2 + nota3
- 5. media \leftarrow soma / 3
- 6. Escreva ("A média é = ", media)