

Autonomously Finding New Control Modes for the Rowing
Blade “Ro” by an Agent-Oriented Evolutionary System

Rogério Perino de Oliveira Neves

Advisor: Prof. Dr. Tsugukiyo Hirayama

Department of Systems Design for Ocean-Space
Yokohama National University

Japan, July 2006

This thesis is submitted to the Faculty of the Graduate School of Yokohama
National University, in partial fulfillment of the requirements for the degree of Doctor
of Engineering. This thesis is entirely my own work and except where otherwise stated
describes my own research.

Rogério Perino de Oliveira Neves

ii

Acknowledgements

In first place, I would like to express gratitude to my supervisor, Professor Dr.
Tsugukiyo Hirayama, whose guidance was fundamental for this research.

Secondly, I would like to thank Prof. Hirakawa and Prof. Takayama for the
assistance they provided in developing this work. Their expertise and technical support
were fundamental in many levels of this project, such as designing models and planning
experiments.

I must acknowledge ex-members of the laboratory who provided support and
friendship, helping me in many aspects of my adaptation to life in Japan, Dr. Nomiyama,
Dr. Nishimura and Mr. Kabuto.

I recognize that this research would not have been possible without the financial
assistance of Ministry of Education of Japan, the technical infrastructure of Japanese
Institute of Navigation (JIN), the hospitality of Yokohama National University Foreign
Student House (Gumyoji Kaikan) and the guidance of Yokohama National University
Ryugakusei Center’s professors and employees. I hereby express my gratitude to those
institutions.

Finally, I would like to dedicate this thesis to my beloved Saori, whose guidance and
support were essential in every aspect of my life in Japan, whose love gave me
inspiration, whose shine enlightened my path, and whose presence was my safe haven,
and without her I could never have finished this work.

iii

 Autonomously Finding New Control Modes for the Rowing Blade “Ro”
by an Agent-Oriented Evolutionary System

Abstract

Defining control systems for previously human performed tasks requires
experienced operators working together with engineers and/or programmers, who apply
their particular expertise to solve the specific control problem under consideration. Yet,
this procedure generates human-oriented solutions, as result the defined controller will
simulate human conducted control rather than generate optimized, machine-oriented
signals specific for the electro-mechanical system. In addition, for unparalleled designs,
such as new or improved control systems, not based in humanistic processes, the
inexistence of operators renders the traditional human definition processes inefficient.
Furthermore, many control systems involves a huge number of inter-dependent
variables, incompatible with the familiar four-dimension coordinate visualization,
making visualization of dependencies incomprehensible for human abstraction and
therefore unsuitable for conventional treatment.

We present here an alternative, autonomous control system training model, based on
natural evolution, Multi-Agent Systems and Distributed Computing, which is able to
profit on modern computer architectures, such multi-processed and distributed systems,
to deal with evolutionary search issues in a reduced timeframe. The method produces
optimized machine-specific oriented control codes by simultaneously exploring the
multi-variable space with multiple instances of agents, in a coordinated search in a
higher resolution than traditional Genetic Algorithms.

Here we describe the method in practice, as we apply it to solve the “Ro” control
problem, a simple one-oar robotic rowing system designed for experimentation, that
allow us to test and compare the autonomously discovered control modes with the
traditional, human conducted rowing.

iv

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

1.1. OBJECTIVE .. 1
1.2. MOTIVATION ... 1
1.3. PREVIOUS WORKS .. 2
1.4. APPROACH .. 3
1.5. THESIS ORGANIZATION ... 5

CHAPTER 2 FUNDAMENTAL CONCEPTS ... 6

2.1. WORKING WITH GENETIC ALGORITHMS .. 6
2.2. ELECTRONIC MULTI-AGENTS ... 11
2.3. OBJECT ORIENTED PROGRAMMING .. 12
2.4. PARALLEL COMPUTING ... 13
2.5. DATABASE .. 14

CHAPTER 3 PROJECT IMPLEMENTATION .. 16

3.1. THE ROBOTIZED EXPERIMENTAL ROWING MECHANISM “RO-BOT” .. 16
3.2. CONTROL CODE REPRESENTATION ... 18
3.3. THE SIMULATION .. 20
3.4. AGENTS .. 25
3.5. THE DATABASE ... 29
3.6. MULTI-VARIABLE SPACE PARTITIONING .. 30
3.7. SPREADING AGENTS TROUGH NETWORKED COMPUTERS ... 31
3.8. SELECTED PARAMETERS FOR MAS AND GA ... 32

CHAPTER 4 SIMULATION RESULTS .. 34

4.1. SIMULATING WELL KNOWN MODES ... 34
4.1.1. Specification and Simulation of the Traditional Swing.. 35
4.1.2. Simulation of the known mode “Rotated Blade” ... 37

4.2. OPTIMAL ROWING MODE FOUND IN TWO-DEGREES OF FREEDOM .. 37
4.2.1. GA Optimized Two-Degrees of Freedom rowing mode ... 37

4.3. NEW ROWING MODES FOUND IN THREE-DEGREES OF FREEDOM .. 39
4.3.1. The X-Swing rowing .. 40
4.3.2. The M-Swing rowing ... 41
4.3.3. The U-Swing rowing .. 43

4.4. MULTI-DIRECTIONAL MODES ... 44

v

CHAPTER 5 EXPERIMENTAL VERIFICATION .. 46

5.1. EXPERIMENT DESCRIPTION ... 46
5.1.1. Cruise Time from Rest (T1) .. 49
5.1.2. Cruise Time at Constant Speed (T2) .. 49

5.2. EXPERIMENTAL RESULTS .. 50

CHAPTER 6 COMPUTATIONAL ANALYSIS ... 53

6.1. THE SINGLE-THREADED MODEL .. 53
6.2. THE MULTI-THREADED MODEL ... 54
6.3. THE DISTRIBUTED COMPUTING MODEL ... 56
6.4. MODEL COMPARISON ... 58

CHAPTER 7 DISCUSSION AND CONCLUSIONS ... 65

7.1. DISCUSSION .. 65
7.2. CONCLUSION .. 66
7.3. SUGGESTIONS FOR FUTURE WORKS ... 67

CHAPTER 8 REFERENCES .. 68

APPENDIX – SOURCE CODES .. 71

vi

List of Figures

Figure 1 – Hiroshige’s “Yoroi no Watashi Koami cho” and a fisherman depicts a Ro
in Japanese art and in practical use nowadays. .. 3

Figure 2 – Modern boat propelled by sculling a western version of Ro. 3
Figure 3 – Example: a DNA array mutated by (bitwise) noise operator, large

probability of a small change, small probability of a big mutation. 7
Figure 4 – Example of crossover operation, here two possible rearrangements are

generated with random breakpoints. ... 8
Figure 5 – In an example of GA operation over a two-dimensional data, some

individuals are scattered over the area containing the local maximum. In time
by reproduction and random crossover some of the individuals achieve higher
fitness values and decimate the inferior population, identifying the highest
points. ... 10

Figure 6 – The robotic rowing mechanism “Ro-bot” mounted in a Catamaran-style
ship. .. 17

Figure 7 – Schematics of the rowing mechanism with the actual coordinate system
adopted in the simulation. ... 17

Figure 8 – Control data packet and its respective values. 18
Figure 9 – Positioning signals for Ro generated by the execution of the DNA codes

represented in the matrix, POS and CMD are represented in hexadecimal
values, the time in milliseconds. The chromosomes correspond to the
commands listed in the box. ... 19

Figure 10 – Wire-frame view of the simulation shows the Ro model and resulting
vectors: normal, attack, lift, drag and total impulse; calculated from the instant
movement. .. 21

Figure 11 – Sensor assembly used to calibrate the simulation. The Ro-bot
mechanism was first mounted over a thrust block, where the impulse produced
in the Y-direction could be recorded. .. 24

Figure 12 – Data obtained from sensors, filtered to remove the noise and the data
generated by the simulation compared, the thrust generated forward (Y
direction) matches in frequency and scale the simulated model. 25

Figure 13 – Single agent diagram containing main groups of functions, identifying
its respective links. ... 26

Figure 14 – Diagram of the distributed structure for the MAS. The server stores

vii

tested solutions and global variables while clients perform the computations. 31
Figure 15 – Representation of a swinging blade by a still image, the blade assumes

the positions marked by gray slices as it moves in the directions pointed by
arrows, black slices marks positions where commands are issued................... 35

Figure 16 – Classic rowing in the proposed bi-dimensional graphic representation,
according to the command sequence shown above in decimal values. 36

Figure 17 – Plot for the instant propulsion over time for C-2DF shows negative
values as thrust direction is behind (-Y), the total fitness to be the integral over
the area between zero and the curve. .. 36

Figure 18 – Rotated blade (RB-2DF) swing mode, specified manually. 37
Figure 19 – GA optimized 2DF rowing (O-2DF). ... 38
Figure 20 – Plot for the instant propulsion over time for O-2DF shows the total

fitness to be result in a larger integral area between zero and the curve than
O-2DF. .. 39

Figure 21 – Diagram for the X-3DF swing, the latest discovered and more efficient
3DF mode. .. 40

Figure 22 – Plot of instant impulse vs. time for this mode. 41
Figure 23 – Diagram of the M-3DF rowing, the first 3DF mode discovered. 42
Figure 24 – Plot of instant impulse vs. time for this mode. 42
Figure 25 – Diagram of the U-3DF rowing, the second found 3DF rowing. 43
Figure 26 – Plot of instant impulse vs. time for this mode. 44
Figure 27 – Screenshot of the serial control application, the control codes are

entered in the proper fields, optionally accompanied by its description. The
mouse or the keyboard can be used to start sending the codes into a continuous
loop. .. 47

Figure 28 – The program interface and its shortcuts were designed specifically to
enable the full operation to be performed by keyboard or even simple portable
numeric keypads connected to the system. ... 48

Figure 29 – Model dimensions and parts. ... 48
Figure 30 – Description of the experiment to measure T1. The timer starts with the

model at rest at the staring point. It is activated simultaneously with the timer.
 .. 49

Figure 31 – Description of the experiment to measure T2. The model is accelerated
before the initial position, the timer starts when the model crosses the starting
point. ... 49

Figure 32 – Plot of the time measured T1 versus the fitness obtained for the control

viii

modes, the solutions are concentrated in a small area with close correlations. 50
Figure 33 – Zoomed plot of the region where solutions are concentrated shows the

correlation of points for 2DF and 3DF modes with acceleration included. 51
Figure 34 – Plot of T2 vs. fitness for the region where the solutions are

concentrated shows the correlation of points for 2DF and 3DF modes without
acceleration. .. 51

Figure 35 – Progress history of the maximum fitness in the population over the first
1000 generations for the single threaded GA model. 54

Figure 36 – Time required for reach a 10% near maximum fitness according to the
number of agents allocated to the effort. The maximum speedup was obtained
using around 5 to 8 agents in a dual core system. .. 55

Figure 37 – Evaluation time vs. number of processors for 25 agents balanced
uniformly among computers. The processor number is the total allocated in all
the systems. ... 57

Figure 38 – Speedup: time required for execution in one processor by the time
required for execution in NP. Figure shows a super-linear speedup [2]. 58

Figure 39 – Progress of maximum fitness over the first 1000 generations for the
single threaded GA version and the distributed MAS model; the final fitness
are 3.4k and 5.2k respectively; total evaluation time dropped from average 26h
to an average 2h. ... 59

Figure 40 – Four alternative examples of the single threaded model showing cases
of evolutionary jumps, points where a higher fitness is spotted, a completely
random event. ... 60

Figure 41 –Fitness history in the multi-threaded model considering only the first
1000 generations. .. 61

Figure 42 – Aspect of a full evaluation, in this example most of the progress is
observed in the first 2000 generations, but the Agent only breaks operation
after 3000 generations without any improvement. This case consumed 17h. .. 61

Figure 43 – When observed for a sufficiently large number of generations, the
fitness history graph tends to look similar to the one presented in Figure 42 in
most cases. .. 62

Figure 44 – Detail of the previous picture shows that a 10% near maximum value
was achieved in the first 500 generations. .. 62

Figure 45 – Multi-threaded, multi-processed GA version history for the first 100
generations shows that the PGA approach provides a smoother progress. 63

Figure 46 – A case study of PGA with a small population per agent (100

ix

individuals) shows a crispy evolution in time, denoting that higher populations
are preferable. ... 63

Figure 47 – Another way to determine the evolution of a system is by the average or
the total fitness, the sum of fitness for the whole population of all agents or
individual agents. To obtain the average fitness the value must be divided by
the global population. ... 64

x

List of Tables

Table 1 – Simulation and experimental results comparison 50

xi

List of Abbreviations

DF Degrees of Freedom

FS File-system

GA Genetic Algorithm

NP Number of Processors

MAS Multi-Agent Systems

OS, DOS Disk Operation System

RO-BOT Robotic “Ro” Rowing Mechanism

xii

List of Symbols

α Blade horizontal position (along X axis)

β Blade elevation (along Y axis)

θ Blade rotation

L

 Lift force

D

 Drag force

F

 Total Impulse Vector (Lift + Drag)

n̂ Unitary vector normal to the profile

d̂ Unitary vector pointing the direction of evaluation

p Value of pressure

Ω∂ Frontier of the domain

Px Point coordinate along X

Py Point coordinate along Y

Pz Point coordinate along Z

0POS Positioning for actuator 0

1POS Positioning for actuator 1

2POS Positioning for actuator 2

xiii

Chapter 1

Introduction

Overview

In this initial chapter the goal and main motivations for developing an autonomous
training system for the robotic Ro control and a quick overview of the current available
research in the field are presented. The traditional and current approaches are
explained and the thesis organization is also presented.

1.1. Objective

The objective of this research is to implement and experiment an autonomous
definition method to search for the optimal, machine-oriented combination of signals to
efficiently control a robotic Ro.

1.2. Motivation

As genetic algorithms become increasingly popular, they are applied to higher
complex problems that may require considerable computations [1]. In cases where the
GA involves calling to complex fitness functions, such as the hydrodynamic test
considered here, parallel implementations become necessary to reach high-quality
solutions in reasonable times.

Reducing the evaluation time requires massive computer power that is often
unavailable. As alternative to multi-processed systems, that are expensive and rare,
computer networks are widely available and relatively cheap. Likewise, computer
networks are usually available in working and researching environments. The
possibility of using an already available computer network to expand search capabilities

1

was one of the main motivations for this project [2] [3].

In order to use the network to achieve solutions in a reduced timeframe a parallel
search procedure need to be coordinated [6]. Multi-agent systems offer an elegant and
efficient new approach to handle the problem. Object-oriented programming (OOP) is
employed to enable agent to agent communication locally and across systems. A
Multi-Agent approach inherits concepts such as autonomy, mobility and cooperation [7],
as the Agent-oriented algorithm spreads to simultaneously search the multi-dimensional
space, migrating among systems as new computers become available, while constantly
communicating between instances to keep track of the progress. Once the agents work
cooperatively, they are constantly communicating by changing objects, in order to avoid
redundant area searches and recalculations of already evaluated points, OOP is a well
established programming doctrine that enables the communication of objects even in
such distributed environments.

1.3. Previous Works

The concept of evolutionary search by genetic algorithms is quickly spreading
through different areas of science, as the computer industry offers increasing computer
power for decreasing costs, the upcoming availability allows an evolutionary approach
[1] to be put in use for a wider, more complex range of problems. But as the complexity
of the algorithms and evaluation functions increase, the hardware and time requirements
grow exponentially [2].

Innumerous researches are in progress in order to use newly available
multi-processed systems to achieve hi-quality solutions in reasonable times, in an effort
named Parallel Genetic Algorithms or PGA [6]. Yet, computer systems with large
number of processors have high costs and short lifespan [2]. Nevertheless the efforts
have given many working solutions [15] [17], faster and cheaper models of parallel
genetic systems are yet to come. Here, an alternative is presented.

2

1.4. Approach

Usually referred as sculling, propelling a ship with one single oar positioned in her
stern is very popular in Asian countries, such as China and Japan.

Figure 1 – Hiroshige’s “Yoroi no Watashi Koami cho” and a fisherman depicts a Ro in
Japanese art and in practical use nowadays.

Figure 2 – Modern boat propelled by sculling a western version of Ro.

The Ro origins are unknown, but it is known from ancient times as it is depicted in

3

many works dating from several ages of history, especially in Japan, China and ancient
Egypt, Figure 1 shows a depiction of Ro and an actual photo. Today it can still be found
in use not only in traditional folkloric regions, as shown in Figure 2.

At first glance, the humanistic control may look intuitive as it is ease to perform, in
a way that one can quickly learn by a simple trial and error process. The definition of
control signals for a robotic actuator, on the contrary, needs a skilled operator, capable
of describing the linguistic operation rules in a comprehensible fashion, in order to a
programmer to be able to implement such rules into the software of a controller.

In the traditional method, the programmer adjusts manually the set of command
control codes to be sent to the actuators, interactively, until the desired result is obtained,
matching the procedure described by the operator. The operator/programmer will most
likely get the hardware to mimic human-performed control, producing human-oriented
signals in the process. This method is based purely on observation and intuition and
always produces humanistic results, rather than optimal results specifically designed for
the hardware in consideration.

To solve the Ro problem, we propose the use of an autonomous training method,
based on natural evolution [1], Genetic Algorithms (GA) [4], Multi-Agent Systems
(MAS) [7] and computer simulation for evaluation of fitness in a distributed framework
[2] [3], which is able among other advantages to find optimal machine-oriented
solutions for scrutinized control problems.

The described method is specially recommended to address systems that involve, for
instance: Dynamical control, multi-dimensional spaces, multiple coordinate systems,
inter-dependent variables and an unknown best solution [4] [5], and such liken systems
that often challenge human visualization capabilities.

The method allows obtaining a variety of different solutions with different benefits
each, by scanning simultaneously several regions of the multi-variable space,
optimizing the system by different sets of criteria, such max speed, acceleration, energy,
fuel consumption, endurance, attrition, etc [4].

The current application is a simple example of control system, which allows us to
compare the proposed procedure with the traditional, human-performed procedure.
Once it is proven ship-worthy, the same method can be extended to treat more complex
control systems by applying these same guidelines (e.g. navigation, collision avoidance,
docking procedures).

4

1.5. Thesis Organization

The objective, motivations and a brief introduction to the approach adopted in this
research are described in this first chapter named Introduction.

In Chapter 2, the fundamental concepts and technologies utilized are explained. The
chapter gives a quick explanation of each topic being applied in this work, making
further chapters easier to comprehend.

The implementation of the project is then explained in detail in Chapter 3.

Chapter 4 shows the results obtained into the simulation, explaining each mode and
its particular characteristics.

Chapter 5 shows the results obtained by applying the previously found modes in the
actual robotized model, and compare the simulated results with the experimental results.

In the Chapter 6, an analysis is presented by the computational point of view,
pointing the advantages in using the Multi-Agent approach to solve the problem n a
reduced time.

A discussion about the experiment, as well as the final conclusions and suggestions
for future works are presented in Chapter 7.

5

Chapter 2

Fundamental Concepts

Overview

In this chapter the fundamental concepts applied in the current framework are
introduced. A quick review of the theory and practical applications of each discipline
are explained in order to facilitate comprehension of the implementation process. The
information presented is summarized to describe solely the concepts applied in this
framework. A comprehensive explanation as well as the state of the art research in each
of the related areas can be found in the provided references.

2.1. Working with genetic Algorithms

Genetic Algorithms take its roots on Darwin’s theory of evolution, and, in addition
to prove Darwin’s concepts, it provides engineers with a powerful tool to solve a sort of
problems. Even though their mechanics are simple, Genetic Algorithms are complex
non-linear algorithms that are controlled by many parameters, which are not always
understood [6]. Parameters are related to population, distribution trough space,
crossover and mutation rates, and not always have well defined values, changing
according to particular attributes of one specific algorithm, some values may only be
found by successive trial.

The baseline is that in a gene-pool, by always selecting the best individuals
according to some pre-defined criteria, we introduce an artificial-selection. In addition,
applying noise and scatter operators to modify the remaining individuals it leads to
successively better solutions.

The gene-pool is the collection of all available individuals, divided in populations
and represented in a string format, also called DNA. The concept of DNA is that a data

6

structure is common to each and every individual and describes its particular
characteristics. For engineering, it is merely a string of variables representing the many
aspects of the addressed problem. Segments of the string that express some specific
feature are called CHROMOSOMES and can be of any sub size of the string. The
values in the gene pool can be started randomly or aided manually, by adding some
already known good or partial solutions in order to speed the process. However, adding
human defined points may cause a system addiction [1].

It is interesting to provide more than one mechanism to change the gene-pool,
increasing the possibility of improving, or evolving the existing population. Once again,
nature already has given useful answers. The most popular operators: Mutation (add
noise) and Crossover (recombination). In short, each operator performs as described:

• Mutation: Introduces a random factor at some point of the DNA array, allowing
for the possibility of increase the overall efficiency. Figure 3 shows examples of
mutation operators.

• Crossover: Combine two existing DNA arrays into new array or arrays, the
resulting solution will be a hybrid of the predecessors, containing features from both.
Figure 4 illustrates the crossover operator in use.

0A 51 …B6 06E3 1FFF FAMUTATED P(01%)

0A 51 …B6 091C A8FF FAMUTATED P(10%)

0A 51 …B6 061C A8FF FAORIGINAL

CROMOSSOMESDNA

0A 51 …B6 06E3 1FFF FAMUTATED P(01%)

0A 51 …B6 091C A8FF FAMUTATED P(10%)

0A 51 …B6 061C A8FF FAORIGINAL

CROMOSSOMESDNA

Figure 3 – Example: a DNA array mutated by (bitwise) noise operator, large
probability of a small change, small probability of a big mutation.

7

FF FA 1D CB 65 23 55 F2 54 5C B3 12 AA 34 65

AB CD FD AF 1D 98 9C A5 BD C3 EF EE A2 11 FB

AB CD FD CB 65 23 9C A5 BD C3 EF EE AA 34 65

FF FA 1D AF 1D 98 55 F2 54 5C B3 12 A2 11 FB

C
hi

ld
re

n

P

ar
en

ts

Breakpoints

 Figure 4 – Example of crossover operation, here two possible rearrangements are
generated with random breakpoints.

Considering a multi-dimensional coordinate system, shaped by an efficiency
function, the two rules represent consecutively a random walk in space, allowing the
algorithm to explore the region for performance peaks, and a random jump, allowing it
to explore different areas of the solution space.

One of the most important factors that determine the performance of the genetic
algorithm performs is the diversity of the population. If the average distance between
individuals is large, the diversity is high; if the average distance is small, the diversity is
low. Getting the right amount of diversity is a matter of trial and error. If the diversity is
too high or too low, the genetic algorithm might not perform well.

By default, the Genetic Algorithm creates a random initial population using the
creation function. One can specify the range of the vectors in the initial population in
the Initial range field in Population options. In the current approach, Agents will have
different ranges for parallel populations, with localized diversity in each partition of the
multi-dimensional space. The details are presented in the next sections.

By constantly applying the rules (select, mutate and crossover) new different
solutions are achieved. A small percentage of these solutions statistically lead to better
efficiencies, the artificial-selection criteria will grant that only the improved ones
survive. So, if in a new generation we achieve a solution that is, to say, 1% better than
in the previous generation, it will be kept, and the old, obsolete solutions will eventually
be discarded.

The GA approach produces improved solutions for each generation, what generally

8

leads to the optimal set. However, the time required to achieve the optimal combination
is theoretically impossible to predict, due to the random nature of the improvement. As
odd as it sounds, the optimal set can be achieve in a few generations, or only achieve
after scanning considerable amount of the multi-variable space. Since the optimal value
is unknown, the maximum efficiency progression must be observed, when its value
seems unchanged for several generations (umber depends on previous progress history),
it may indicate that a local or global maximum efficiency was reached. The result in any
case is an optimal set or a sub-optimal set. For small, localized populations, the system
may get stuck in some sub-optimal area of the space, never reaching out for the global
optimum. Resetting the whole gene-pool a few times may spot different solutions, or
prove some recursively achieved solution is indeed the optimal solution for the problem.
Considering that the population may in any case get trapped into a sub-optimal region
of the space, several randomly initiated attempts are recommended to confirm whatever
the values found are indeed the optimal set of values for the algorithm.

Figure 5 shows a simple example of GA operation over a 2 dimensional surface data
vs. fitness, in a three-dimensional plot.

Detailed information about GA, its roots, concepts and applications can be found in
[1], [4], [5] and [6].

9

Figure 5 – In an example of GA operation over a two-dimensional data, some
individuals are scattered over the area containing the local maximum. In time by

reproduction and random crossover some of the individuals achieve higher fitness
values and decimate the inferior population, identifying the highest points.

10

2.2. Electronic Multi-Agents

In the theory of Electronic Multi-Agents, agents are small pieces of program imbued
with one or more objectives. The agents cooperate with each other in order achieve the
specified objective. They have a set of rules or procedures, called methods, which helps
them to perform special functionality and communications, in order to accomplish such
objectives.

The theory is not well defined and there is still many controversial definitions about
the main concepts that define an electronic agent. Despite many approaches can
converge in a common end, while emphasizing different aspects, two main lines of
research can be distinguished: the first focuses on the building of individual
intelligences whose communication is organized, whereas the second imagines very
simple entities whose co-ordination emerges in time without the agents being conscious
of it. In fact, a huge number of different schools of MAS persist, all coming from
different theoretical backgrounds. These include the American DAI school (Lesser,
Gasser, Sycara), the Rational Agents branch (Rao and Georgeff, Shoham, Castelfranchi),
the branch focusing on Speech Acts (Finin), on Petri nets (Estraillier), the Reactive
Agents branch (Brooks, Steels, Drogoul, Ferber, Demazeau) and those focusing on
learning (Weiss and Sen) [7]. These researches, although having different points of view,
are very complementary, and each one has their own selection of applications.

The main applications of multi-agent systems at the moment are [7]:

Problem Solving: As an alternative to centralized problem solving, either because
problems are themselves distributed, or because the distribution of problem solving
between different agents reveals itself to be more efficient way to organize the problem
solving. The reason for its broad application is neither: It can be flexible and allow
failures in the system, or, in some cases, it is the only way to solve the problem.

Multi-Agent Simulation: Simulation is widely used to enhance knowledge in
biology or in social science and MAS gives us the possibility to make artificial
universes that are small laboratories for the testing of theories and experiments.

Construction of Synthetic Worlds: These artificial universes can be used to describe
specific interaction mechanisms and analyze their impact at a global level in the system.
The entities that are represented are usually called ANIMATS, since they are mainly
inspired by animal behaviors (hunting, searching or gathering habits). The aim of this
research is to have societies of agents that are very flexible and can adapt even in cases

11

of individual failure. (For example, when robots are sent on an expedition and they are
required to be very independent from the instructions they could receive.)

Collective Robotics: Defining the robots as MAS where each subsystem has a
specific goal and deals with that goal only. Once all the small tasks are accomplished
the big task is too. The MAS approaches can also be used in the co-ordination of
different mobile robots in a common space.

Kinetic Program Design: MAS can also be seen as a very efficient modular way to
program, especially in an Object Oriented Programming environment.

In the present application, the agents will be used to perform a distributed search
effort in a multi-dimensional space. To each will be given a population with a random,
localized gene-pool and the GA rules to alter and operate the individuals in this
population. The agents have mobility, meaning agents can migrate to other computers
as new processing power become available. They can travel and communicate among
themselves trough the network or even the internet, depending on the selected topology
for each execution, allowing the use of all available means to spread the load for the
task.

The comprehensive foundations for the MAS theory can be found in [7], [8], [11]
and [12]. Practical applications of GA can be found in [15], [17] and [19].

2.3. Object Oriented Programming

Object Oriented Programming or OOP is a programming doctrine that quickly
spread among programmers worldwide, due to the simplicity and practicality in
organizing complex, multi-modular codes into several separate objects resembling the
real world.

Objects are the key to understanding object-oriented technology. Comparing to
real-world objects, Objects in OOP share two characteristics: They all have state and
behavior. For example, cats have states, such name, color, breed, hungry and behaviors
such eating, sleeping, etc. Software objects are modeled after real-world objects in that
they too have state and behavior. A software object maintains its state in one or more
variables. A variable is an item of data named by an identifier. A software object
implements its behavior with methods. A method is a function (subroutine) associated
with an object. By this definition, an object is a software bundle of variables and related

12

methods.

Real-world objects can be represented by using software objects [10]. It is also
possible to use software objects to model abstract concepts. For example, an event is a
common object used in window systems to represent user actions, such a mouse button
or a key press.

A single object alone generally is not very useful. Instead, an object usually appears
as a component of a larger program or application that contains many other objects.
Through the interaction of these objects, programmers achieve higher-order
functionality and more complex behavior. Software objects interact and communicate
with each other by sending messages. Sometimes, the receiving object needs more
information so that it knows exactly what to do. This information is passed along with
the message as parameters.

Recent OOP technologies allow exchanging of messages to occur in distributed
environments, using the network to transport the messages to remote objects in several
interconnected computers [2] [3] [16]. Those technologies are essential for the current
project.

2.4. Parallel Computing

One of the advantages of employing MAS is that, in a multi-threaded environment,
you can distribute several agents among the available processors and systems in order to
obtain direct speed-ups. Now, lets suppose we have available a network of computers
that stays idle for most of the time, or by chance just underachieve their full processing
potential with desktop applications, at least in a specific time period, let’s say (i.e.
during the night or holydays). It is natural to assume that their idle resources can be
allocated to help solving the problem in a fraction of time. By porting some code to the
target computer, agents can span to the connected machines through the network as their
processors becomes idle. A small deployed executable evaluates the communication
between the client (where the agents are migrating to) and the server (the primary holder
of resources).

The implementation of parallel programs can be tricky and complex. Different from
linear algorithms, parallel systems may have a series of peculiarities in the debugging
process, such access problems and violations to public memory, and often require to the

13

programmer to implement a series of safeguard routines, such signalizations and access
privileges. The implementation can be facilitated by following common directives
clearly and concisely presented in [2] and [3].

Three concepts are most important when working with distributed computing [3]:

• Granularity: refers to population, and how the system processors are allocated.
When a large number of threads execute in few processors, you have a high granularity.
Granularity is important to balance the performance of individual tasks.

• Partitioning: refers to the segmentation of the search space. Several topologies
can be used, but better results are obtained if the partitioning is linked to the function
and the way individuals explore the space.

• Communication: In parallel computing, refers to the way neighboring partitions
exchange information, the concept differs from agent communication, principle applied
in the current work.

Under the current project, the program executing in the client computers is no more
than a re-compilation of the server-side code, but with modified code in order to target
the server when operating global resources, such environment variables and the solution
database. Through these resources, the client program evaluates the necessary
communications, get directions for the search and informing the server of current
progress. In a client-server structure, the server computer must be always operational in
order to the communication among remote agents to function properly. In
contraposition, clients can break operation abruptly without compromising the overall
system integrity.

In the agent communication approach, the partitions of the multi-variable space are
not well defined. Frequently individuals of an agent’s population initially allocated to a
partition invade the neighboring partition to explore the space. These individuals are not
stopped, unless they hit one particular point where evaluation was already performed.

2.5. Database

Database as referred here consists of a list of tested solutions and respective
evaluation results, used to store DNA (solutions or individuals in GA) representing
points already visited by the algorithm, avoiding redundant, time-consuming

14

computations by the simulation method. Despite quick access database systems are
available, such Oracle, SQL and JDBC, those constitute a much over-dimensioned
database solution than actually needed for the present problem, once concepts such
normalization and cross reference are not applied in this approach. Instead, here, we rely
on the OS file-system to store files containing the test information. Most recent
file-systems, such NTFS and ext3 and RaiserFS provide support for metadata and the
use advanced data structures to improve performance, reliability and disk space
utilization plus additional extensions such as security access control lists and file system
journaling. Everything that has anything to do with a file (file name, creation date,
access permissions and even contents) is stored as metadata. This elegant, albeit abstract,
approach allowed easy addition of file-system features for fast searches. Although
complex to implement, this allows faster access times in most cases. A file system
journal is used in order to guarantee the integrity of the file system itself (but not of
each individual file). The present implementation for the database is described in detail
under the section The Database in Chapter 3.

15

Chapter 3

Project Implementation

Overview

In this chapter, the implementation of the project is described in detail. The procedures
described here where performed simultaneously, as hardware and software design were
intrinsically linked and modified constantly, but the project are separated in eight
distinct parts: the physical model (hardware); code representation, simulation, agents,
database, partitioning, networking and parameter definition.

3.1. The Robotized Experimental Rowing Mechanism “Ro-bot”

For the application, a robotic model, fondly named “Ro-bot”, able to produce Ro
movements in three degrees of freedom was built and later incorporated into a
catamaran style ship. Figure 6 shows the model used in the project.

The robotic arm consists of three actuators disposed in a perpendicular orientation
for an easy translation in a three-dimensional coordinate system (see Figure 7). The
elevation, horizontal displacement and Ro rotation can be operated individually by
sending codes to each actuator [9].

16

Figure 6 – The robotic rowing mechanism “Ro-bot” mounted in a Catamaran-style ship.

αβ

θ

Ro

Pivot
#2 #1 #0x

z

y

x

z

y
x

y

 Figure 7 – Schematics of the rowing mechanism with the actual coordinate system
adopted in the simulation.

In an early stage, the Ro-bot were mounted over a thrust block, used to measure
disturbances caused by operation in the water and calibrate the simulation. In possession
of such device and the semantic rules for its operation, the problem was to define
suitable sets of control signals to activate it in a timely fashion.

17

3.2. Control Code Representation

The DNA parameters must be determined for the specific problem in study. The
DNA must represent all the variables that affect the system. For the constructed Ro-bot,
the actuators (step-motors) operate by receiving a four-byte serial code trough a
common serial interface. The code is composed by:

1. Header: always FF;

2. COMMAND: motor address and operation;

3. POSITION: target position;

4. Checksum: calculated by the formula C = (CMD xor POS) and 7F

Each command then follows the structure:

Header (1) COMMAND (2) POSITION (3) Checksum (4)

As an example, the following byte string resets the blade rotation horizontally:

FF 22 7F 5D

Figure 8 express these dependencies and respective ranges graphically.

Header Data 1 Data 2 CHKSUM

1 byte 1 byte 1 byte 1 byte

F F

Command

D1^D2&7F

01001100
Target Motor

(HEX)

(BIN)

0-4 0-3 Pos: 00-FE

Figure 8 – Control data packet and its respective values.

Once those are already digital data, representation is unnecessary and the codes are
directly assigned as DNA parameters. The header, as a constant, is excluded once it is

18

not operated by the GA, simplifying the DNA. The same applies to Checksum, which
can be later calculated by the control software. The COMMAND byte contains bits
specifying the target actuator address and operation; however its inner workings are
irrelevant for the GA, for the positioning command, it can assume the values 20, 21 and
22, referring to the actuator #0, #1 and #2 respectively. POSITION has particular
limitations in range, for #0, #1 and #2, characteristic to the Ro-bot construction. This
must be considered when operating this byte, once there is a risk of damaging the model
when sending improper codes. One extra byte must be added in order to provide timing
to the command queue; it has been named DELAY or TIME (short for time to wait).
The DNA then consists of a series of sequential commands divided into chromosomes
of three bytes, named respectively CMD, POS and DELAY or TIME. The sequence
repeats in a loop, generating a unique signal that positions the actuators synchronously.
A matrix is one possible representation of the data in the DNA array, making it easier to
understand, but representation makes no difference whatsoever for the GA, which
always treat the data as a byte array. Figure 9 shows the matrix representation and
resulting positioning signals of a code based on the traditional human control.

200022
300620
2004022
3005020

C
B

X

Theta

Move Right, (wait) 300 ms

Turn counter-clockwise, 200 ms

Move left, 300 ms

Turn clockwise, 200 ms, go to 1

cmd pos time

1

2

3

4

Figure 9 – Positioning signals for Ro generated by the execution of the DNA codes
represented in the matrix, POS and CMD are represented in hexadecimal values, the
time in milliseconds. The chromosomes correspond to the commands listed in the box.

19

Another representation was needed in order to manage database filenames and to be
used in communications. A hash code provides an alternate representation of the DNA
array, identifying individuals by short ASCII file-system compatible names. For this
purpose, a simple concatenation algorithm was used to generate a unique hash for each
individual.

3.3. The Simulation

The need for a consistent simulation of the mechanical model is fundamental for the
proposed method to work. The simulation must be fine tuned to match physics and
timing of the mechanical model in order to produce useful results that can be used in the
model represented. The simulation must be able to evaluate the system for some
predefined criteria, returning qualitative numeric values to be used by fitness functions
and further classification of the solutions.

A simulation of the Ro-bot arm was implemented to test solutions. The DNA code is
passed to a function that simulates the hydrodynamics around the swinging blade,
changing the Ro orientation and rotation according to the positioning signals received.
The function evaluates the amount of thrust produced by each Ro movement for a
specified period. Figure 10 shows the simulation view port. The view port is disabled
during GA evaluations to save processing power.

20

Figure 10 – Wire-frame view of the simulation shows the Ro model and resulting
vectors: normal, attack, lift, drag and total impulse; calculated from the instant

movement.

Some approximations were made for the simulation in order to speed up the
calculations:

• Steady state: fluid speed remains unchanged. As considered during the
calibration, the Ro-bot is considered to be fixed at the referential, with restrained
movements, limited to the blade;

• Flat blade: The Ro shape was simplified to a flat blade, the wing effects were
not considered into the simulation;

• Infinitesimal extrapolation: An infinitesimal surface area of the Ro is used for
calculation and extrapolated to the whole surface.

The approximations allow faster calculations for GA experiments and benchmarking,
however they introduce discrepancies from the real model. These discrepancies,
nevertheless, affect uniformly all the tested solutions, not affecting the overall
comparison among solutions for the steady case.

21

The first step is translating the command codes contained into the DNA to
positioning commands for the actuators, using them to indicate actual targets angles for
our virtual Ro blade.

Second, we perform simulated movements in time matching those of the actual
model. The absolute positions were calibrated experimentally and transformations
calculated to match the actual physical model. The obtained translations, from actuator
positioning commands to angles in radians (as shown in Figure 7) were matched as
follows:

()

radsPOS

radsPOSradsPOS

radsPOS

667.84
127

7854.0*
180

*112
141.89

127

2

1
1

0

−
=

−=
−

−=

−
=

θ

πβ

α

To position the blade, we then use the rotation transform in three dimensions to shift
the virtual Ro in space, applying for each point the three transformation matrixes [14]:

=

1

1

1

Pz
Py
Px

− θθ

θθ

cos0sin
010

sin0cos

0

0

0

Pz
Py
Px

Rotation over Y axis (Roll)

=

2

2

2

Pz
Py
Px

−

ββ
ββ

cossin0
sincos0
001

1

1

1

Pz
Py
Px

Rotation over X axis (Pitch)

=

Pz
Py
Px

 −

100
0cossin
0sincos

αα
αα

2

2

2

Pz
Py
Px

Rotation over the Z axis (Yaw)

Considering then the disposition of the actuators and consequent dependencies for
the transformations, to determine the final position for the vertices, we start the rotations
with the Ro in the default initial position, as presented in Figure 7. Then we first
perform the Y-axis rotation with the θ angle, changing the Ro inclination. Subsequently,
the points can be repositioned in space by performing two individual rotations, first over

22

the X-axis, with the β angle and after over the Z-Axis with α. This way, the operations
follow the dependencies presented in the actuator assembly, where the hierarchy
determines the resulting position for the vertices.

A simplified discrete version of the hydrodynamic force on blade, derived from the
Bernoulli principle was used for numeric calculation. Assuming proportional vectors
and eliminating constants, we obtain the summation of force for specific simulated time,
in a thrust related action:

 () Ω∂=+= ∫
Ω∂

dnpDLF

In the discrete form, the numerical calculation of force is then obtained by the sum
over time of the resulting force for a specified simulated time.

() ∑∑
Ω∂

=+=
T

nptDtLtF

The function returns a three dimensional vector containing the strength and direction
of the average total force resulting from the full operation over the simulated time:

 () ()∑ ==
T

ZYX ZYXFFFtF ,,,,

The fitness is calculated by the dot product (projection), using a unitary vector in the
evaluated direction:

dtFdFFitness
T

ˆˆ ⋅=⋅= ∑

Note that the simulation returns a unique vector for each point in space associated to
the received DNA. Considering that the simulated period is not changed, these values
can be reused even if the fitness function is changed into the agent. The fitness is a
scalar value, and changes according to the selection criteria.

 Calibrating the simulation to match the real physics in the model is the most
important, as well as the trickiest part of the experiment. The simulation failure to
match operating aspects may cause unexpected behaviors outside the simulation and
even render the solution unusable. For this reason, several experiments were conducted
to evaluate actuators in operation conditions. Figure 11 shows the sensor configuration
assembled to measure the actual model response and attributes.

23

Figure 11 – Sensor assembly used to calibrate the simulation. The Ro-bot mechanism
was first mounted over a thrust block, where the impulse produced in the Y-direction

could be recorded.

Sensors were used to determine the amount of impulse generated by operating Ro
inside a water basin. The measures were later compared to the data generated by the
simulation, to verify consistency. Figure 12 shows the comparison between measured
and simulated impulses.

After calibration, the simulation obtained frequency and amplitudes matching the
real model sensory data, differing only from a scale factor, result of the approximations
introduced in the simulation.

24

Figure 12 – Data obtained from sensors, filtered to remove the noise and the data
generated by the simulation compared, the thrust generated forward (Y direction)

matches in frequency and scale the simulated model.

3.4. Agents

The agents in this approach are instances of one same program. They execute
simultaneously, both within the system and through the limits of the network in case of
distributed computing topologies. They spread uniformly among the available
processors locally and in all MAS enabled systems [11]. Figure 13 summarizes the main
groups and respective modules (representing methods) involved in each single agent
operation, as well as the connections between these modules.

25

Main()

Hash()

Solution
generator

File system

Evaluate()

Database
Access

solution
modifier()

STORAGE

RUNTIME

GAHELPER

Figure 13 – Single agent diagram containing main groups of functions, identifying its
respective links.

At first, a set of solutions is generated by the solution generator method that has the
set of rules to create valid operating solutions randomly within allowed boundaries.
Then the agent is locked into an infinite loop, which performs the evaluation for every
solution, rank and finally performs the genetics according to provided rules, storing the
progress in the FS Database.

Setting the local population to 1000 individuals (parameter selected for the current
case), the following pseudo-code represents the operations performed by one single
agent (the Matlab codes are available for reference in the Appendix):

26

1. Number of solutions n=1000

2. Randomly create n solutions from Global_Template with global_variance

3. Update Global_Template to for partition

4. Maximum Fitness MAX=0

5. Loop:

 For all n solutions (highly parallelizable)

 Consistency check

 If evaluation is in the Global_database,

 retrieve evaluation(n),

 else evaluation=evaluate(n)

 Fitness(n)=evaluation•direction (scalar)

 If Fitness>MAX,

 MAX=Fitness(n),

 Best_solution=solution

 Save solution to best_database

 Sort solutions by Fitness(n)

 Best 5%: time to live

 Worst 10%, kill

 50 amongst the best 25%, crossover by pairs

 Positions 100- 900, operate mutation

 Communicate progress to server

 Receive server directives

6. Repeat loop

27

A preliminary consistency check before evaluation, avoids waste of simulation time
with inconsistent solutions (invalid commands and POS out of range). A quick lookup
on the database also checks if the evaluation was already performed for one point,
avoiding redundant calls to the fitness function.

Finally, an agent may use an arbitrary number of operators to try in increasing its
solutions fitness. These operators are not restricted to GA. The implementation of
additional operators can benefit the convergence speed. Methods may vary depending
on each programmer preference, ability and particular expertise. Some examples arise
from, e.g., Neural Nets, Simulated Annealing and gradient climbing. For the current
experiment, only Mutation and Crossover were used.

The number of agents and local populations must be scaled according to available
computational resources. Each agent can be given an arbitrary number of individuals, a
large population can make the calculation slow, and a small population may not produce
significant improvements per generation. Selecting optimal values for agent numbers
and respective populations comes only from experience. Granularity problems may
arise from bad choices. To the actual experiment topology, a dual-core computer
(server) connected to 4 single-core computers (clients), 2 to 4 agents per core with a
1000 local population produced satisfactory results. The analysis used to define the
optimal numbers is later presented in Chapter 6 (see Figure 36).

The simulation (Evaluate function) is the most time-consuming task and the most
requested method by every agent, in parallel computing terms, the bottleneck. Several
ways to reduce calls to this function were implemented, such preliminary tests, lookups
in the local and server database and communications to check if another agent is
performing a search in the neighborhood. By this context, agent communications have
not the purpose share results in order to improve individual populations, but to avoid
redundant searches in the same region of the space. Once populations often revisit
recent evaluated points, is important to keep track of recent points. This is done by
adding some specific fields in the DNA. Another way to reduce the call to the fitness
function is by implementing a solution database. The database requires a large amount
of memory, and is not suitable for all problems. The use of a compressed hash code is a
good method of saving storage memory.

28

3.5. The Database

One of the new proposals is to avoid redundant evaluations by implementing a
database for tested individuals. In addition to each agent to keep on track of the recently
performed evaluations, it stores the tested values into a database, associating each result
to a unique hash. Once one GA randomly falls back in a tested point, it uses the stored
value instead of calling the evaluation function. This method is limited by memory to
the number of solutions currently stored by the agent, and by disk-storage capacity to
the resolution of scanned space. It also requires fast search capabilities, recent 64-bit
computing, together with improvements in the file-system finally allow the use of this
resource to save processing time.

As alternative to the use of a database-engines, such as SQL or JDBC, which would
increase the overall resource load, those values were stored straight into the file-system,
under a special folder hierarchy, using the file-system itself to provide fast search
capabilities. Making the database folder accessible trough the network, all agents, local
or remote, can access its contents.

A unique hash is obtained by concatenating the hexadecimal DNA array to be used
as filename. The evaluation return values are the only data recorded into it. Hash
uniqueness is required, compression and hash algorithms also can be used for this
purpose. To accelerate the search, the folder structure is determined by the first six
values in the DNA (being never smaller than nine bytes). The gene database also keeps
record of the best solutions found, with date and time, allowing a history analysis of the
progress. The server organization is structured as follows:

DNA: 20 50 03 22 40 02 20 B6 03 22 C0 02

HASH: (0)3-50-(2)0+(0)2-40-(2)2+(0)3-B6-(2)0+2+C0+2=350024023B602C02

FILE: //server/tests/20/50/03/22/40/02/350024023B602C02.dat

Best solutions: //server/best/350024023B602C02.dat

Global variables: //server/data.db

All agent information and current progress is stored at the server once in every
generation, not allowing data to be lost by crashes on server or client sides.

29

This approach creates an intricate folder structure and a large number of files. Disks
are usually required to be formatted after being used for this purpose. For this reason
alone a dedicated hard disk is recommended. LAN drives are cheap and adequate for the
task, the disk-accesses are of an order of milliseconds (for new hard disks and
file-systems), in comparison to a seconds-long time required to perform one simulation,
it represents a time saving.

3.6. Multi-variable Space Partitioning

The task of distributing the load among computers starts with the decision of how to
partition the problem space. The space can be divided in several ways, by different
topologies, depending on the number of dimensions, treatment given, nature of
operations, etc. To determine the best partitioning method, knowledge about the volume
being partitioned is essential.

For the current problem, we can first analyze the structure of the present
multi-parameter space by determining the possible values each member of the DNA can
assume. Using for this purpose the matrix representation of the values, we can explode
the possibilities for each line as follows:

CMD=20, 21, 22 (3) POS=0-FF (255) T=0-1s (10)

The maximum number of lines is 14, limited by the algorithm. In this case, we have
an exponential explosion of the form:

4602.41410*255*3 EEiespossibilit ==

The exponential explosion leads to a number never bigger than 4.02E46, the number
of maximum possible solutions.

The available agents have to spread its population trough a part of this space,
defined by the assigned partition, expressed by a central point and a variance, defining a
uniform cubic distribution. Then the agent scatters randomly its initial population in a
uniform distribution according to those parameters.

Once the GA cannot distinguish between the variables in the DNA, the easiest way
to partition this space is by the initial variables in the DNA. In this case there are 3 main
partitions in the first dimension. The second and third dimensions are divided in

30

sections according to the estimated maximum number of agents available for the MAS.
Additional parameters in the DNA can be used for the partitioning, but it may
complicate partition visualization. This was the current solution adopted.

A better solution would be to link the partitioning to the way agents search the space,
specifying segments in every dimension, i.e., divide every parameter in the DNA by
equal segments. It would produce a large number of partitions and a highly localized
agent population, consequently increasing the resolution of the search. But this high
granularity solution would require additional processing power, not available in the
circumstance.

3.7. Spreading Agents Trough Networked Computers

The agents executing in the client computers are no more than the same version of
the server-side agents with modified global variables so they can target the server’s
address on the network. The server holds the global resources, environment variables
and the solution database, necessary to clients to perform communications, get
directions for the search and inform of the current progress. Figure 14 presents the
actual architecture for network distributed processing.

•Database/
•Global
variables/
•Agents/
•Simulation

Agents/
Simulation

Agents/
Simulation

Agents/
Simulation

…

Ethernet

Server

Client Client Client

Figure 14 – Diagram of the distributed structure for the MAS. The server stores tested
solutions and global variables while clients perform the computations.

31

To profit on the networked computers idle power, we set the agent launching
application as screensaver in all clients. Once the idle time is elapsed, the application is
started, initiating a pre-specified number of agents as specified, determined according to
the local system resources [6].

The started agents get a random partition of the space to search on, defined by a
point in space and a specific variance for each dimension. This localizes the search at
the start, but individuals eventually travel to neighboring partitions over time. For
trespassing individuals, they are not stopped unless they hit a point where evaluations
were already performed by another agent. This condition is implemented in the database.
If there is an evaluation for that particular point in the current database performed by
another agent, the current individual is eliminated, avoiding redundant evaluations.

The communication relies heavily on the operational system, once all the agents
have the same code and communicate trough global variables localized in the server,
special care must be taken to avoid simultaneous accesses to the same file. Signaling
and queuing procedures have been adopted to ensure that only one agent has access to
one file at the time.

In cases where some computers are fully dedicated to the search effort, increasing
the number of agents for a high granularity is recommended. Higher granularities will
swarm the populations over the multi-dimensional space more efficiently, however, will
cause the system to run unbearably slow.

3.8. Selected Parameters for MAS and GA

For the actual experiment, the following best working parameters were obtained:

Number of agents:

 Usually NP+1 (Number of Processors in the system plus one) to 5NP (five
times the Number of Processors), depending on each computer performance;

 One single agent for shared systems, systems running critical processes and
elder computers. Population per agent: 1000;

Population variance (space partitioning):

 3 partitions in the first parameters (20, 21, 22);

32

 20% for each following parameter (5 partitions per dimension);

 Total partitions = 3x5x5 = 75 partitions.

 Task priority was set to highest on the server and to idle on client computers.

Mutation rate:

 90% probability for factor 0-1%;

 9% probability for factor 1-10%;

 1% probability for factor 10-100%.

Crossover:

 Performed for 25 random pairs among the 100 best, producing 2 children per
couple.

Artificial selection rules every generation:

 Elite (top 5 highest ranked individuals) receive a time-to-live of 5
generations;

 Discard worst 100.

Stop rules:

 Stop if maximum fitness is unchanged for 3k generations;

 Stop if no new points are tested for 1k generations;

 After stop, randomize population in next partition and restart.

The actual parameters where achieved by successive adjustment. Different networks
and problems may present better results with different settings. Theoretical
extrapolations can be used to guess starting points, but most theories do not consider
concurrent populations.

33

Chapter 4

Simulation Results

Overview

In this chapter, some of the results obtained in the simulations are introduced. The
traditional mode, as well as other well know modes, are also presented for future
comparison. Matrixes and diagrams are used to explain the mechanics of each
particular rowing, as introduced in section 4.1. The mechanics of the new found modes
in two and three degrees of freedom are presented in the proposed form.

4.1. Simulating Well Known Modes

As hard as it is to represent time-dependent events by still images, the selected
representation consists of a top view with a fix reference (simulation scenario, with
Ro-bot attached to the referential) and the blade can be seen swinging in the surface
from above. The diagram shows Ro represented by a single slice (see Figure 15) in the
air-water interface, used to show positions the blade assume in time (gray slices), black
slices denotes points where commands are issued and are accompanied by arrows
representing operations. The matrix representation and hash code are also presented,
and can be used to visualize the rowing in three dimensions using the simulation’s
visualization engine or to control the model using the control the application [20].

34

Air-water interface

Command received

Figure 15 – Representation of a swinging blade by a still image, the blade assumes the
positions marked by gray slices as it moves in the directions pointed by arrows, black

slices marks positions where commands are issued.

4.1.1. Specification and Simulation of the Traditional Swing

We first analyzed the “classic” Ro swing reproduced as observed in the traditional
humanistic control; it will be called C-2DF from here. The control codes were presented
previously in Figure 9, in hexadecimal values and milliseconds, from now all the matrix
values will be presented in pure decimal numbers: Figure 16 shows a box containing the
commands represented by the chromosomes in the matrix, and a diagram of C-2DF
rowing mode:

C-2DF=

200 192 34
300 182 32
200 64 34
300 80 32

 Hash 350024023B602C02

35

0, T1 T1/2

Figure 16 – Classic rowing in the proposed bi-dimensional graphic representation,
according to the command sequence shown above in decimal values.

Observing the instant impulse on time produced in the evaluated direction we can
better understand the implication of the fitness, the area under the curve for F vs. time.
Figure 17 shows the plot of instant impulse vs. time.

Figure 17 – Plot for the instant propulsion over time for C-2DF shows negative values
as thrust direction is behind (-Y), the total fitness to be the integral over the area

between zero and the curve.

36

4.1.2. Simulation of the known mode “Rotated Blade”

Another solution, known as the Rotated Blade (referred here as RB-2DF, see Figure
18), was manually feed into the program. The aim was look for an optimized version for
this mode. For the simulation, a flat blade was considered. In the real Ro model a wing
effect exists in only one direction, causing asymmetry in the resulting thrust and
generating side-effects (stall). Any tentative to optimize this mode failed, leading to
some of the other modes discovered by MAS, indicating that this mode is less efficient
than other newly found swings.

RB-2DF =

200 192 34
300 182 32
200 64 34
300 80 32

0 140 33

 Hash 08C1350024023B602C02

0, T1 T1/2

Figure 18 – Rotated blade (RB-2DF) swing mode, specified manually.

4.2. Optimal Rowing Mode Found in Two-degrees of Freedom

Ignoring the Ro-bot ability to perform movements in three degrees of freedom
(3DF), at first we limited the movement in the MAS to two degrees of freedom (2DF)
by disabling access to one of the actuators, in order to check if the system finds a
similar answer to C-2DF.

4.2.1. GA Optimized Two-Degrees of Freedom rowing mode

The result was found in 9 hours, the MAS achieved a similar solution to C-2DF, but
with altered response times and increased frequency. The increased frequency led

37

consequently to a higher thrust over time. This mode will be referred as Optimized for
2DF or O-2DF. Figure 19 schematizes the mode.

O-2DF=

0 39 34
100 40 34
100 94 32

0 95 32
300 224 34
0 182 32

100 179 32
200 80 32

 Hash 25001B300B603E0205F015E012820272

0, T2 T2/2

T2/4 3T2/4

Figure 19 – GA optimized 2DF rowing (O-2DF).

Analyzing the O-2DF it can be observed that the rowing mode gains its frequency
by reducing the time required to turn Ro in the corners. Instead, this mode turns Ro
gradually just before in the region where less thrust is generated. More than provide a
better performance, this rowing mode requires about the same energy for thrust as the
traditional rowing.

The plot of instant impulse vs. time for this mode shows an increased area of thrust
under the graph, as noticed in Figure 20.

38

Figure 20 – Plot for the instant propulsion over time for O-2DF shows the total fitness
to be result in a larger integral area between zero and the curve than O-2DF.

4.3. New Rowing Modes Found in Three-degrees of Freedom

The next step was to extend the movements to 3DF, allowing the use all actuators.
Several new possibilities for operating Ro in this condition were found. Here we
describe the most efficient and interesting among them, named respectively: The
X-swing (X-3DF), the U-swing (U-3DF) and the M- swing (M-3DF).

39

4.3.1. The X-Swing rowing

X-3DF=

200 140 33
0 200 32

200 100 33
200 55 34
200 140 33
0 56 32

200 100 33
200 200 34

 Hash 2C822641038028C1237226410C8028C1

++

Figure 21 – Diagram for the X-3DF swing, the latest discovered and more efficient 3DF
mode.

The most efficient new 3DF rowing found was named X swing, for the moving that
resembles an X shape. This move combines lift and drag to increase overall output of
thrust. Figure 21 has a diagram representing the X-3DF mode.

40

Figure 22 – Plot of instant impulse vs. time for this mode.

The modes in three degrees of freedom produces more work as consume more
energy. The impulse graph presented in Figure 22 gives an idea of the generated thrust.

4.3.2. The M-Swing rowing

DNA=

200 192 34
100 127 33
100 100 33

0 182 32
200 64 34
100 127 33
100 100 33
0 80 32

 Hash 0500164117F124020B60164117F12C02

41

++

Figure 23 – Diagram of the M-3DF rowing, the first 3DF mode discovered.

The first 3D mode found, having inferior thrust compared to X-3DF and U-3DF,
was named M swing for a similar a reason as in X-3DF. Both require much higher
energy levels to perform the rowing operation when compared to 2DF modes. Figure 23
schematizes the M-3DF swing. Figure 24 shows the instant thrust vs. time.

Figure 24 – Plot of instant impulse vs. time for this mode.

42

4.3.3. The U-Swing rowing

DNA=

100 140 33
200 100 33

200 7 34
100 80 32
100 140 33
200 100 33
200 255 34
100 182 32

 Hash 1B602FF2264118C115002072264118C1

++

Figure 25 – Diagram of the U-3DF rowing, the second found 3DF rowing.

The third newly found 3DF rowing for three degrees of freedom. This rowing
presents higher performance than the M-3DF and less performance than the X-3DF.
Figure 26 shows the instant impulse vs. time.

43

Figure 26 – Plot of instant impulse vs. time for this mode.

4.4. Multi-Directional Modes

For maneuvering purposes, additional modes were evaluated by changing the fitness
function to left and right turn and backward rowing. Those were used mostly for
positioning the model in experiments, as well as to prove the capability of the MAS to
find solutions by different criteria only by changing the fitness function. The following
list summarizes the DNA codes in decimal matrix and hash form for turning and
maneuvering backwards:

44

Backward=

300 80 32
200 64 34
300 182 32
200 192 34

 Hash 2C023B6024023500

Right turn=

200 140 34
200 182 32

200 1 34
200 80 32
100 80 33

 Hash 1501250020122B6028C2

Left turn=

200 254 34
200 182 32
200 127 34
200 80 32
100 80 33

 Hash 1501250027F22B602FE2

45

Chapter 5

Experimental Verification

Overview

In this chapter experimental results are obtained by testing the codes autonomously
found by the MAS in the actual physical model. The experiments were performed in a
towing tank for a limited length in two different conditions. Each rowing had its time
taken for a three meters course several times, under different circumstances.

5.1. Experiment Description

For the experiment, the codes are entered into a serial communications program,
especially developed for sending the control codes to the actuators trough the serial
interface. Figure 27 shows the interface of the control application. The interface was
designed to operate the system using a numeric keypad, as the one shown in Figure 28.

The time benchmarking of experiments were performed in a towing tank for a three
meters course under two different conditions, from rest (T1) and at a constant speed
(T2), to be able to compare both maximum speed and acceleration. Each rowing mode
had its course time taken five times and the average time was used for comparison.

The course length is 3 meters, for times T1 and T2. T2 has a 2 meters acceleration
length before the start of benchmarking. The model size is about 40 cm in length by 30
cm in diameter, and 10 cm tall. The depth inside the water is about 7 cm. It is connected
to the computer and power supply by a 3 meters wire. The Ro size is about 28 cm by 2
cm. Figure 29 summarizes the model dimensions and parts.

46

Figure 27 – Screenshot of the serial control application, the control codes are entered
in the proper fields, optionally accompanied by its description. The mouse or the

keyboard can be used to start sending the codes into a continuous loop.

47

Figure 28 – The program interface and its shortcuts were designed specifically to
enable the full operation to be performed by keyboard or even simple portable numeric

keypads connected to the system.

40 cm long

28 cm long

30
 c

m
 w

id
e

Power/communications cable
3 m long

7 cm depth

Ro
2 cm wide

20
 c

m
 in

ne
r s

pa
ce

10 cm
tall

Ro-bot
Rowing mechanism

Catamaran ship

Figure 29 – Model dimensions and parts.

48

5.1.1. Cruise Time from Rest (T1)

The time was measured for the course starting from rest, meaning that at T=0, the
Speed=0. This measure includes the time required for accelerate the model, and will
allow the comparison of acceleration characteristics among rowing modes. Figure 30
describes the experiment for measuring T1.

Speed=0

0m3m

T1

Figure 30 – Description of the experiment to measure T1. The timer starts with the
model at rest at the staring point. It is activated simultaneously with the timer.

5.1.2. Cruise Time at Constant Speed (T2)

This measuring starts at a speed condition as the model is accelerated at some
distance from the starting point of the course. This allows us to compare the rowing
modes by maximum speed. Figure 31 explains the experiment to measure T2.

Speed=0

0m3m

T2

Speed>0

-2m

Figure 31 – Description of the experiment to measure T2. The model is accelerated
before the initial position, the timer starts when the model crosses the starting point.

49

5.2. Experimental Results

Here the calculated fitness in the Y direction is compared to the times T1 and T2
obtained in the experiments, the comparison between the several modes. These results
are analyzed and discussed in Chapter 7.

Table 1 – Simulation and experimental results comparison

MODE F (K) T1 (S) T2 (S)

C-2DF 3.2 12.0 10.5
RB-2DF 2.9 11.5 10.2
O-2DF 4.6 10.5 9.6
X-3DF 6.6 11.4 10.5
M-3DF 5.4 12.0 11.0
U-3DF 6.2 11.2 10.6

Table 1 compares the fitness calculated from the evaluation in simulation to the
course times for the two described conditions: T1, from rest and T2, at constant speed.

The correlation between the two timings can be better contemplated in the plots T1
and T2 versus fitness presented in Figure 32, Figure 33 and Figure 34, respectively.

T1

Fitness
1 2 3 4 5 6 7

5

10

oC2
oRB2

oO2
oX3

oM3

oU3

Figure 32 – Plot of the time measured T1 versus the fitness obtained for the control
modes, the solutions are concentrated in a small area with close correlations.

50

T1

Fitness1 2 3 4 5 6 7

11

12 oC2

oRB2

oO2

oX3

oM3

oU3

10

Figure 33 – Zoomed plot of the region where solutions are concentrated shows the
correlation of points for 2DF and 3DF modes with acceleration included.

T2

Fitness1 2 3 4 5 6 7

10

11

oC2

oRB2

oO2

oX3

oM3

oU3

9

Figure 34 – Plot of T2 vs. fitness for the region where the solutions are concentrated
shows the correlation of points for 2DF and 3DF modes without acceleration.

51

The solutions are concentrated in a small region closely correlated, but no linear
distribution can be observed. The causes will be later discussed in Chapter 7, but for
now is enough to say that the simulation considers the system to be fixed at the
referential and in the actual experiment different rowing modes generated a soft of side
effects, such tilt and swing of the whole set (ship and rowing mechanism) in addition to
the increasing drag with speed for 3DF modes, causing the observed discrepancies
between the simulated fitness and the measured timings.

52

Chapter 6

Computational Analysis

Overview

In this chapter we compare the results obtained in executing the MAS in different
processing scenarios and settings by the computational perspective, pointing the
particular performances and advantages obtained with each approach, according to the
number of agents, processors and topology of network involved in the task.

6.1. The Single-Threaded Model

At first, in the single threaded experiment, a sub-optimal solution (10% of global
maximum) was obtained after two days of continuous execution. The optimal control
for each problem was found in intervals from 12-48 hours. In many occasions the
experiment converged into a sub-optimal region of the space, never reaching out to the
global optimum. To confirm the optimal values, was required to reset the MAS several
times to random values. Further executions required less time, once they profit on
evaluations stored into the database.

The progress, or system evolution, is obtained by observing the maximum fitness in
the population over time. This gives the sense of how the solutions are progressing over
the generations. Figure 35 shows the fitness over generations plot for the single thread
model of GA.

53

Figure 35 – Progress history of the maximum fitness in the population over the first
1000 generations for the single threaded GA model.

The final fitness in this graph is ~3.4k, but the experiment goes beyond 1000
generations. The total evaluation time for this example was 26h.

It is observed that the system many times stagnate for several generations, then
suddenly, an evolutionary jump is observed. This happens in a fashion much similar to
observed in the nature, where better fit individuals appear and later dominate the entire
population. For GA, the size of the population and its variety often determines how
frequently these evolutionary jumps happen.

6.2. The Multi-Threaded Model

The later agent-based experiments (multi-threaded) demonstrated the saying “two
heads are better than one”. For MAS running in one single, dual-core system (two
processors), under the “divide and conquer” approach, initial sub-optimal solutions

54

were found at a record of 15 minutes, and optimal values form 2 hours to 25 hours,
depending on the configuration used. Concurrent populations not only decreased
computation time for a limited number of agents, but the probability of getting stuck in
local maximums was negligible for higher number of agents.

The MAS system was executed for several numbers of agents in the tested system,
with two processors. The time was measured for the MAS to achieve fitness 10% close
to the maximum known fitness. The plot of the results obtained is shown in Figure 36.

15

20

25

30

35

40

0 10 20 30 40 50

agents

ho
ur

s

Figure 36 – Time required for reach a 10% near maximum fitness according to the
number of agents allocated to the effort. The maximum speedup was obtained using

around 5 to 8 agents in a dual core system.

It was observed that the MAS performed better as the number of agents is increased,
reaching a maximum around 5-8 agents for this system. After that point, adding agents
caused the system to run increasingly slow. As the resources, such memory and
processing power, get scarcer and more programs are competing for these resources,
executing a large number of agents simultaneously causes a total collapse of
performance. It was observed that the number of agents must be associated with the
resource usage, observing the limitations, especially for available memory, once disk
swaps can cause the system to run at a very low performance.

55

The most efficient number of agents for each system depends of the system
resources and the agent algorithm, or how much resources each single instance of agent
allocates. Theoretically, for unlimited resources, the bigger the number of agents, better
the algorithm converges (high granularity).

6.3. The Distributed Computing Model

In the last phase, we distribute the agents among all the available systems for
comparison. The number of agents was dimensioned to obtain the maximum
performance in each system.

In our current application, we have computers of different ages and performances.
Agents executing in slow computers are at a disadvantage. Trying to keep the
distribution uniform, we limit the number of agents by the available processing power.
This way, we can have a similar agent/processor ratio by balancing the population by
this criterion.

We measure the time for execution of the MAS individually in each system to
obtain the performance calibration and determine the proper number of agents for that
system. Later, we executed the MAS in a distributed fashion, with network
communication trough the server, and measured the time to achieve a 10% near value of
the maximum known fitness, as we add more systems to the task. Figure 37 summarizes
the obtained times.

56

0

5

10

15

20

25

30

0 1 2 3 4 5 6

processors

ho
ur

s

Figure 37 – Evaluation time vs. number of processors for 25 agents balanced uniformly
among computers. The processor number is the total allocated in all the systems.

It was observed that the time decreased as more systems are added to the task. The
limited number of systems available for the experiment gives an idea of the
performance gain by utilizing a distributed MAS approach. The gain can be better
analyzing by utilizing the Speedup, a common measure used to evaluate parallel
algorithms [2] [3]. The Speedup is obtained by dividing the time required for execution
in one single processor by the time required for execution in NP (number of processors).

()
()NPT

PTSpeedUp 1
=

Figure 38 shows the plot for speedup versus number of processors.

57

0

5

10

15

20

25

30

0 1 2 3 4 5 6

processors

sp
ee

du
p

Figure 38 – Speedup: time required for execution in one processor by the time required
for execution in NP. Figure shows a super-linear speedup [2].

People familiar with parallel algorithms knows that most problems present a less
than linear speedups, other logarithmic speedups. But for some problems, the nature of
the problem, when treated by parallel algorithms, generates what is called a super-linear
speedup. This is what happens in this case. The nature of the problem, where new
solutions depends intrinsically of previously found solutions, causes a larger number of
agents to explore the space more efficiently, with a higher resolution for each partition,
consequently achieving better solutions in less time.

6.4. Model Comparison

Analyzing the average time required for calculations in each case, it is observed that
higher agent numbers are better, but a limitation exists, imposed by the available
computational resources. By distributing agents among several systems, we obtained a
super-linear speedup. The time is reduced usually to less than half for every added
system, as could be observed in the presented experiments. Figure 39 compare the
progress histories of the single-threaded and the distributed multi-agent model.

58

Figure 39 – Progress of maximum fitness over the first 1000 generations for the single
threaded GA version and the distributed MAS model; the final fitness are 3.4k and 5.2k

respectively; total evaluation time dropped from average 26h to an average 2h.

59

The following figures shows history plots of fitness for several experiments in
different conditions, each described in the respective caption. The purpose of these plots
is to spot the random nature of the Genetic process, which can radically vary for two
consecutive experiments, even if restarted with unchanged parameters and conditions.

Figure 40 – Four alternative examples of the single threaded model showing cases of
evolutionary jumps, points where a higher fitness is spotted, a completely random event.

60

Figure 41 –Fitness history in the multi-threaded model considering only the first 1000
generations.

Figure 42 – Aspect of a full evaluation, in this example most of the progress is observed
in the first 2000 generations, but the Agent only breaks operation after 3000

generations without any improvement. This case consumed 17h.

61

Figure 43 – When observed for a sufficiently large number of generations, the fitness
history graph tends to look similar to the one presented in Figure 42 in most cases.

Figure 44 – Detail of the previous picture shows that a 10% near maximum value was
achieved in the first 500 generations.

62

Figure 45 – Multi-threaded, multi-processed GA version history for the first 100
generations shows that the PGA approach provides a smoother progress.

Figure 46 – A case study of PGA with a small population per agent (100 individuals)
shows a crispy evolution in time, denoting that higher populations are preferable.

63

Figure 47 – Another way to determine the evolution of a system is by the average or the
total fitness, the sum of fitness for the whole population of all agents or individual

agents. To obtain the average fitness the value must be divided by the global
population.

64

Chapter 7

Discussion and Conclusions

7.1. Discussion

In the 2DF experiments, the lowest resistance to the water flow is obtained in the
RB-2DF, but this mode is still less efficient than the newly found O-2DF, which is able
to achieve higher speeds. Nevertheless, RB-2DF revealed a superior efficiency over the
traditional classic rowing C-2DF.

In the later 3DF (three degrees of freedom) experiments, it was noticed that the 3DF
modes present a better acceleration, but an inferior top speed. The experimental results
were not as optimistic as expected by the simulation analysis, considering the
experimental Ro-bot mounted in a ship do not operate in the same conditions as
expressed in the simulations for 3DF modes.

The simulation was based in the first built model of the Ro-bot experiment, where
the Ro-bot was mounted over a thrust block, having its movements limited by the
assembly at a fix position, having only the Ro blade as moveable part. When
incorporated into the catamaran style ship, constructed later for additional comparisons,
most of the modes generated a large deal of tilt, splash and other side effects over the
whole system.

The discrepancy is also a result of some of the approximations made to implement a
fast simulation, which considered a static fluid and just measure the impulse caused by
the swing of the blade, with the ship mechanism being considered fixed into a
referential. This approximation benefited the acceleration factor for the case when the
fluid speed is low, explaining the high fitness obtained for simulated 3DF modes. The
bottom-line is that under certain fluid motion conditions (higher speeds), moving the
blade back and forward adds an increasing resistance to the water flow, increasing the
drag and therefore reducing the maximum speed. The price paid for a fast simulation

65

was that this behavior was not predicted. A full hydrodynamic simulation, exactly as
considered in the water-borne experiment, would imply much slower simulations,
resulting in exponentially long evaluation times. The limited project schedule and
computational power required a fast model in order to provide benchmarking
information and verify he efficiency of the method. The results obtained feature low
consumption and hi-speed, as in O-2DF, and high acceleration, verified in X-3DF.
However, a full featured simulation may spot even more efficient rowing modes for
hi-speed conditions.

Yet, the new found results in 3DF could be proven to be as effective as the modes in
2DF, and even more efficient in some aspects, especially when compared with the
Classic human performed rowing style.

7.2. Conclusion

The experiments demonstrated that the method can successfully locate and identify
potential solution areas in the multi-variable space, potentially spotting the highest
fitness solution for a specified control problem.

The method was able to identify new solutions for the proposed problem, in addition
to the conventional, optimized solution as expressed by the evaluation function. Some
of the newly found solutions clearly demonstrate to be non-intuitive, being hardly
achieved by human specification methods. Other useful solutions needed for
maneuvering (turning motions), could be easily identified by simply changing the
fitness function to evaluate vector projections in different directions.

Using the actual model, the results could be tested and compared, allowing the
improvement of the theoretical computer simulation, as well as verifying the feasibility
of spotted potential new rowing modes.

The agent-oriented approach enabled the achievement of solutions in a reduced time
frame, obtaining super-linear speedups for an increased number of agents and
processors involved.

Once the method has been used successfully for the proposed problem, it is safe to
assume that it can be extended to the treatment of more complex control system
problems, such as navigation, collision avoidance or docking procedures.

66

It is fundamental to remark that the reliability of the described method mainly
depends on the accuracy of the computer simulation used to evaluate the solutions. As
noticed in the current experiment, small discrepancies can lead to unpredictable effects.

7.3. Suggestions for Future Works

The current work neglected some characteristics of ship motion in order to provide
fast benchmarking. A full hydrodynamic model of the ship, considering speed, tilt and
momentum, can produce more satisfactory results, and even reveal new rowing modes
not yet discovered.

The physical model had a limitation imposed by a wired connection to the computer,
used for serial communication and power supply. This limited the maximum length for
experiments. A wireless solution for communications, as well as a built in power supply
would remove this limitation. Unfortunately, it would also increase the overall weight
of the model, decreasing speed and slowing acceleration.

The same method described can be adapted without much difficulty to simulate
other maneuvering characteristics of Ro, as well as to solve other control problems in
marine science. Here are some examples:

Determine an autonomous obstacle avoidance guideline for ships, with optimal
response times and lowest fuel consumption.

Establish an autonomous docking system for computer controlled ships, using an
input-output matrix relation.

Determine intelligent controls for up-to-date manually performed tasks in several
aspects of ship operation.

67

Chapter 8

References

1. P. J. Bentley, (Editor), Evolutionary Design by Computers, Morgan Kauffmann (1999),
ISBN: 155860605-X

2. A. Grama, G. Karypis, V. Kumar, A. Gupta, An Introduction to Parallel Computing:
Design and Analysis of Algorithms, Addison Wesley (2003) Second Edition, ISBN:
0201648652

3. I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering, Addison Wesley (1995), ISBN: 0201575949, also available on
http://www-unix.mcs.anl.gov/dbpp/, last access June/2006.

4. Mitchell, M., An Introduction to Genetic Algorithms, MIT Press (1997), ISBN:
0262133164

5. Michalewic, Z., Genetic Algorithms + Data Structures = Evolution Programs,
Springer Verlag (1996), ISBN: 3540606769

6. Cantú-Paz, E., Efficient and Accurate Parallel Genetic Algorithms, Volume 1 of the
Book Series on Genetic Algorithms and Evolutionary Computation, Kluwer Academic
Publishers (2002), ISBN: 0792372212

7. Ferber, J., Multi-Agent System: An Introduction to Distributed Artificial Intelligence,
Harlow: Addison Wesley Longman (1999), ISBN 0201360489

8. Xie, M., Cooperative Behavior Rule Acquisition for Multi-Agent Systems using a
Genetic Algorithm, On “Advances in Computer Science and Technology”, ACST 2006,
ACTA Press (2006), ISBN: 0889865450

9. Killian, C., Modern Control Technology - Components & Systems, Thomson Delmar
Learning, 3rd edition, ISBN: 1401858066

68

http://www-unix.mcs.anl.gov/dbpp/

10. Yevick, D., A First Course in Computational Physics and Object-Oriented
Programming with C++, Cambridge University Press (March 17, 2005), ISBN:
0521827787

11. Huntbach, M. M.; Graem A Ringwood, G. A., Agent-Oriented Programming: From
Prolog to Guarded Definite Clauses, Lecture Notes in Computer Science / Lecture
Notes in Artificial Intelligence. Vol. 1630, pp. 329-333, Springer (1999), ISBN:
3540666834

12. Hayes-Roth, B., An Architecture for Adaptive Intelligent Systems, Artificial
Intelligence: Special Issue on Agents and Interactivity 72 (1995), pp. 327-365

13. Kaplan, D.; Glass, L., Understanding Nonlinear Dynamics, Springer (1995), ISBN:
0-387-94440-0

14. Kreyszig, E., Advanced Engineering Mathematics, John Wiley & Sons; 8th edition
(January 1999), ISBN: 0-471-15496-2

15. Neves, R. P. O.; Netto, M. L., Evolutionary Search for Optimization of Fuzzy Logic
Controllers, 1st International Conference on Fuzzy Systems and Knowledge
Discovery, Volume I, on Hybrid Systems and Applications I (2002), ISBN:
9810475209, available at http://www.lsi.usp.br/~rponeves/work/fuzzy/FSKD'02

Evolutionary search for FLC.PDF , last access June/2006

16. Shoham, Y., Agent-Oriented Programming, Readings in Agents, edited by Huhns,
M.N.; Singh, M.P., pp. 329-349 - Morgan & Kaufmann, S. Francisco (1998),
available http://www.damas.ift.ulaval.ca/~coursMAS/Agent-Oriented-Programming.pdf,
last access June 2006.

17. Neves, R. P. O. and Netto, M. L., A Virtual Reality Framework for Artificial Life
Simulations, VII Symposium on Virtual Reality Proceedings, Sao Paulo, SP, pp.
217-227, ISBN 8576510065, available at
http://cognitio.incubadora.fapesp.br/portal/producao/artigos%20eventos/SVR2004/2004.06_R

PON_SRV-alive-VF.pdf , last access June/2006.

18. Various contributors, Multi-Agent Systems, http://www.multiagent.com/, last access
June/2006.

19. Various contributors, Genetic Algorithms Archive, http://www.aic.nrl.navy.mil/galist/, last
access June/2006.

69

http://www.lsi.usp.br/%7Erponeves/work/fuzzy/FSKD'02%20Evolutionary%20search%20for
http://www.lsi.usp.br/%7Erponeves/work/fuzzy/FSKD'02%20Evolutionary%20search%20for
http://www.damas.ift.ulaval.ca/%7EcoursMAS/Agent-Oriented-Programming.pdf
http://www.multiagent.com/
http://www.aic.nrl.navy.mil/galist/

20. Hirakawa, Y., Sea and Air Control Systems Laboratory Home page,
http://www.seakeeping.shp.ynu.ac.jp/index-e.html .

70

http://www.seakeeping.shp.ynu.ac.jp/index-e.html

Appendix – Source Codes

Overview

In this single appendix, the latest source codes used to generate the solutions are
presented. The source codes presented here are the final versions, presenting some
improvements over previous versions and removing some less used functions for
simplicity. The math and subroutines were simplified and separated in order to make
easier the code comprehension. The codes are Matlab sources, the C++ sources used to
implement the executable versions were derived directly from the compiled versions of
such codes using the Matlab compiler Matcomp. The alterations needed to provide
distributed functionality are described as comments within the code.

Main Code

This code performs most of the agent functionality as well as the GA functionality.

function main()

% Main program for MASM (no args)

%% Initialization

mat=zeros(15,3,100);

% Enter partial results here

 % mat(:,:,1)=fil(hmat('0500164117F124020B60164117F12C02'));

beginwith=1; % and change the index for 1st randomly created

71

datapath='solutions/'; % Change for target network path

 % e.g. '//IP/path/solutions/' for remote agents

tempdrive='T:/'; % Use ramdrive or temp partition if unavailable

disp(['datapath is "' datapath '"']);

disp(['tempdrive is "' tempdrive '"']);

if exist(datapath,'dir')~=7

 disp([datapath ' not found, creating folder structure...']);

 mkdir(datapath);

 mkdir([datapath 'high']);

end

if exist([datapath 'db/'],'dir')~=7

 mkdir([datapath 'db/']);

end

if exist([tempdrive 'temp/'],'dir')~=7

 mkdir([tempdrive 'temp/']);

end

if exist([tempdrive 'temp/masm/'],'dir')~=7

 mkdir([tempdrive 'temp/masm/']);

end

for i=0:9

 if exist([tempdrive 'temp/masm/' num2str(i) '/'],'dir')~=7

 mkdir([tempdrive 'temp/masm/' num2str(i) '/']);

 end

end

if exist([datapath 'data.mat'],'file')==0,

 disp([datapath 'data.mat not found, starting from scratch!']);

 index=zeros(size(mat,3),1);

 fm=0;

 hist=[0; fm]; % Time History

 disp('Creating entries...');

 % set i=1:size to discard the partial results

 % else, set i=next blank entry:size

 for i=beginwith:size(mat,3)

 mat(:,:,i)=fil(create());

 end

 disp([num2str(size(mat,3)) ' entries created!']);

72

else

 disp('Loading data.mat...');

 load([datapath 'data.mat'],'index','fm','mat','hist');

end

gen=0;

%% Main Loop

tic;

disp('Evaluating...');

while(1)

 tested=0;

 reused=0;

 gen=gen+1;

 for i=1:size(mat,3),

 submat=clip(mat(:,:,i));

 hs=hash(submat);

 if exist([tempdrive 'temp/masm/' hs(1) '/' hs '.mat'],'file')==0,

 f=evl(submat);

 ftm=-f(2);

 mat(15,3,i)=ftm; % single fitness for selection

 if (ftm>fm),

 fm=ftm;

 fid=fopen([datapath 'high/' hs],'w');

 fclose(fid);

 save([datapath 'data.mat'],'index','fm','mat','hist');

 save([datapath 'best.mat'],'submat');

 disp(['New best: (Ef=' num2str(fm) ') ' hs ' Saved.']);

 end

 save([tempdrive 'temp/masm/' hs(1) '/' hs '.mat'],'ftm')

 % uncomment to enable db-track functionality

 %fid=fopen([datapath 'db/masm/' hs(1) '/' hs '.mat'],'w');

 %fclose(fid);

 tested=tested+1;

 else

 load([tempdrive 'temp/masm/' hs(1) '/' hs '.mat'],'ftm');

 mat(15,3,i)=ftm; % single fitness for selection

73

 reused=reused+1;

 end

 end

 % Sort index

 [ef index]=sortrows(reshape(mat(15,3,:),[size(mat,3),1]));

 ef(1:size(mat,3))=ef(size(mat,3):-1:1);

 index(1:size(mat,3))=index(size(mat,3):-1:1); % Decrescent

 Apply GA rules

 % disp('Performing genetics...');

 best=1;

 worst=size(mat,3); % first to go

 % Create some new

 while(worst>.95*size(mat,3))

 mat(:,:,index(worst))=fil(create());;

 worst=worst-1;

 end

 % Best: clone/mutate clone

 while(best<.01*size(mat,3))

 mat(:,:,index(worst))=fil(mutate(clip(mat(:,:,index(best)))));

 best=best+1;

 worst=worst-1;

 end

 % Time to live

 for i=1:5

 if mat(15,2,index(i))<1, mat(15,2,index(i))=6;

 elseif mat(15,2,index(i))==1,

 mat(:,:,index(i))=fil(mutate(clip(mat(:,:,index(i)))));

 disp(['Elite top ' num2str(i) '/5 died.']);

 elseif mat(15,2,index(i))>1,

mat(15,2,index(i))=mat(15,2,index(i))-1;

 end

 end

 % Crossover = 2*n offspring from n pairs (best quarter only)

 for i=1:.2*size(mat,3)

 a=clip(mat(:,:,index(floor(rand*size(mat,3)/4)+1)));

74

 b=clip(mat(:,:,index(floor(rand*size(mat,3)/4)+1)));

 [c d]=crossover(a,b);

 mat(:,:,index(worst))=fil(c);

 worst=worst-1;

 mat(:,:,index(worst))=fil(d);

 worst=worst-1;

 end

 % Mutate all the rest

 while(worst>5)

 mat(:,:,index(worst))=

 fil(mutate(clip(mat(:,:,index(worst)))));

 worst=worst-1;

 end

 hist=[hist; fm];

 save([datapath 'data.mat'],'index','fm','mat','hist');

 c=clock;

 disp(['[' num2str(gen) '-Gen] ' date ' ' num2str(c(4)) ':' ...

 num2str(round(c(5))) ', '...

 num2str(round(toc/60)) ' minutes total, '...

 num2str(tested) ' tested, '...

 num2str(reused) ' reused.']);

end

75

Evaluation function

This is called from inside the MAS code and performs the simulation of the Ro
blade, evaluating the thrust related force for the specified time.

function evl(mat,cord)

% ef=evlg(mat,cord)

% Evaluates the efficiency of command matrix mat

if nargin<1,

 mat=[32 85 300

 34 85 200

 32 169 300

 34 169 200]; % 350024023B602C02

end;

%% Simulation variables initialization

line=1;

wait=0;

time=10000; % Specified time in milliseconds

lines=size(mat,1);

pos=[127 127 127]; % Initial position

dest=[127 127 127]; % Initial destination

step=[.30 .16 .45]; % Step in 1/1000 s

%% Evaluation variables initialization

ft=[0 0 0]; % Total force applied

aph=(pos(1)-127)/89.141; % Alpha angle

bt=-(pos(2)-92)/57.3; % Beta angle

RX=-cos(bt)*sin(aph);

RY=cos(bt)*cos(aph);

RZ=sin(bt);

ref=[RX RY RZ]; % Reference vector

76

all=[0 0 0];

%% Main Loop

for t=1:time

 %% Enter command

 if wait<1

 motor=mat(line,1)-31;

 newpos=mat(line,2);

 wait=mat(line,3);

 dest(motor)=newpos;

 line=line+1;

 if line>lines, line=1;

 end

 end

 direction=((dest-1)>pos)-((dest+1)<pos);

 pos=pos+(step.*direction);

 wait=wait-1;

 %% Evaluation process

 aph=(pos(1)-127)/89.141;

 bt=-(pos(2)-92)/57.3;

 th=(pos(3)-127)/84.667;

 X=sin(th)*cos(aph)+cos(th)*sin(bt)*sin(aph);

 Y=sin(th)*sin(aph)-cos(th)*sin(bt)*cos(aph);

 Z=cos(th)*cos(bt);

 RX=-cos(bt)*sin(aph);

 RY=cos(bt)*cos(aph);

 RZ=sin(bt);

 aref=ref;

 normal=[X Y Z];

 n=-normal;

 ref=[RX RY RZ];

 attack=aref-ref;

 impulse=(dot(attack,n)/dot(n,n))*n;

77

 ft=ft+impulse;

 % Activate this comments for the motor positioning plot

 % projection (dot(a,b)/dot(b,b))*b

 % [sqrt(X^2+Y^2+Z^2) X Y Z aph bt th]

 %% Graph 2D

 %plot(t,pos(1),'r-','Markersize',3,'Erasemode','none');

 %plot(t,pos(2),'y-','Markersize',3,'Erasemode','none');

 %plot(t,pos(3),'b-','Markersize',3,'Erasemode','none');

 %% Gpaph 3D

 %ap=attack*100;

 %g=impulse*100;

 %plot3([g(1) 0 ap(1) 0 RX 0 X],…

 [g(2) 0 ap(2) 0 RY 0 Y],…

 [g(3) 0 ap(3) 0 RZ 0 Z]);

 %axis([-1 1 -1 1 -1 1]);

 %Graph common

 all=[all; impulse];

 %grid on;

 %drawnow;

end

f=ft;

%% Graph

figure(1); clf;

subplot(3,1,1);

axis([1000 time min(all(:,1)) max(all(:,1))]); hold on; box;

plot(all(:,1)','r-');

grid on;

title('X');

subplot(3,1,2);

axis([1000 time min(all(:,2)) max(all(:,2))]); hold on; box;

plot(all(:,2)','r-');

grid on;

78

title('Y');

subplot(3,1,3);

axis([1000 time min(all(:,3)) max(all(:,3))]); hold on; box;

plot(all(:,3)','r-');

grid on;

title('Z');

%legend('Motor 0','Motor 1','Motor 2',3);

Visualization function

Use this function to visualize the movements in the generated solutions, passing as
argument the matrix generated by the MAS main program or the hash code, together
with hmat(‘hash’).

function vis(mat, mode, time)

% vis(hsh,mode,time,framerate)

% Graphs moves

tic

if nargin<1,

 mat=[32 80 300

 34 64 200

 32 182 300

 34 192 200]; % QUICK

end;

if nargin<2,

 mode=1;

end

if nargin<3,

 time=6000;

end

79

%% Simulation variables initialization

line=1;

wait=0;

data=[0 0];

[lines cols]=size(mat);

pos=[127 127 127]; % Initial position

dest=[127 127 127]; % Initial destination

step=[.30 .16 .45]; % Step in 1/1000 s

%% Evaluation variables initialization

ft=[0 0 0]; % Total force applied

aph=(pos(1)-127)/89.141; % Alpha angle

bt=-(pos(2)-92)/57.3; % Beta angle

RX=-cos(bt)*sin(aph);

RY=cos(bt)*cos(aph);

RZ=sin(bt);

ref=[RX RY RZ]; % Reference vector

%% Graph nitiation

fig = figure(1);

set(fig,...

 'Color',[1 1 1],...

 'InvertHardcopy','off',...

 'PaperUnits','points',...

 'PaperPosition',[1 311 640 480],...

 'PaperSize',[640 480],...

 'PaperType','<custom>');

clf;

if mode==0

 title('Motor positioning');

 set(gca,'Drawmode','Fast');

 axis([0 time 0 260]); hold on; box;

80

else

 title('Vectors');

 set(gca,'Drawmode','Fast');

 plot3([-1 1 1 -1 -1],[1 1 -1 -1 1],[0 0 0 0 0],'-b','Erasemode','none');

 axis([-1 1 -1 1 -1 1]);hold on; box; grid on;

 p1=plot3([0 0 0 0 0 0],[0 0 0 0 0 0],[0 0 0 0 0

0],'-k','Erasemode','normal');

 p2=plot3([1 0 0],[0 1 0],[0 1 0],'-r','Erasemode','normal');

 p3=plot3([0 1 0],[0 1 0],[0 1 0],'-g','Erasemode','normal');

 drawnow;

end

%% Main Loop

for t=1:time

 %% Enter command

 if wait<1

 motor=mat(line,1)-31;

 newpos=mat(line,2);

 wait=mat(line,3);

 dest(motor)=newpos;

 line=line+1;

 if line>lines, line=1;

 end

 % disp([motor newpos wait]);

 disp(pos)

 end

 direction=((dest-1)>pos)-((dest+1)<pos);

 pos=pos+(step.*direction);

 wait=wait-1;

 %% Evaluation process

 aph=(pos(1)-127)/89.141;

 bt=-(pos(2)-92)/57.3;

 th=(pos(3)-127)/84.667;

 X=sin(th)*cos(aph)+cos(th)*sin(bt)*sin(aph);

81

 Y=sin(th)*sin(aph)-cos(th)*sin(bt)*cos(aph);

 Z=cos(th)*cos(bt);

 RX=-cos(bt)*sin(aph);

 RY=cos(bt)*cos(aph);

 RZ=sin(bt);

 aref=ref;

 normal=[X Y Z];

 n=-normal;

 ref=[RX RY RZ];

 attack=aref-ref;

 impulse=(dot(attack,n)/dot(n,n))*n;

 ft=ft+impulse;

 % projection (dot(a,b)/dot(b,b))*b

 % [sqrt(X^2+Y^2+Z^2) X Y Z aph bt th]

 if mode==0 %% Graph 2D

 plot(t,pos(1),'r-','Markersize',3,'Erasemode','none');

 plot(t,pos(2),'y-','Markersize',3,'Erasemode','none');

 plot(t,pos(3),'b-','Markersize',3,'Erasemode','none');

 else %% Gpaph 3D

 ap=attack*100;

 g=impulse*100;

 set(p1,'Xdata',[0 -Z/16 RX Z/16 0 X/4]);

 set(p1,'Ydata',[0 X/16 RY -X/16 0 Y/4]);

 set(p1,'Zdata',[0 X/16 RZ -X/16 0 Z/4]);

 set(p2,'Xdata',[0 ap(1) 0]);

 set(p2,'Ydata',[0 ap(2) 0]);

 set(p2,'Zdata',[0 ap(3) 0]);

 set(p3,'Xdata',[0 g(1) 0]);

 set(p3,'Ydata',[0 g(2) 0]);

 set(p3,'Zdata',[0 g(3) 0]);

 end

82

 drawnow;

 data=[data;t impulse(2)];

end

disp(ft)

f=sqrt(ft(1)^2+ft(2)^2+ft(3)^2);

disp(f)

%% Graph offset

if mode==0

 legend('Motor 0','Motor 1','Motor 2',3);

end

Helper functions

These functions provide side functionality for other members of the package, as
described in the first command for each function.

Standardize the matrix format to 14 lines

%% Adjust aspect

function c=fil(a) % Fill zeros

c=a;

n=size(a,1);

if n>14, n=14;

end

c(15,:)=[n 0 0];

Remove zeroed lines from matrix

function c=clip(a) % Remove zero lines

c=a(1:a(15,1),1:3);

Performs mutation

%% Mutational operator

83

function c=mutate(a) % Mutate matrix argument

ProbSamllMut=1; % x100=%

ProbSwap=.15; % 10%

ProbLargeMut=.05; % x100=%

r=rand; c=a;

if r<ProbLargeMut % Change whole chromosome

 i=round(rand*size(a,1))+1;

 % c(i,1)=floor(rand*3+32); % COMMAND CHANGE

 c(i,2)=floor(rand*255); % POSITION CHANGE

 c(i,3)=round(rand*9)*100; % TIME CHANGE

 if r<ProbLargeMut/4

 if size(a,1)>3

 c=[a(1:i-1,:); a(i+1:size(a,1),:)]; % CROP LINE i

 end

 end

elseif r<ProbSwap

 i=floor(rand*(size(a,1)-1))+1;

 temp=c(i,:);

 c(i,:)=c(i+1,:);

 c(i+1,:)=temp;

elseif r<ProbSamllMut % Small mutation

 i=floor(rand*size(a,1))+1;

 if r<.60

 while (c(i,2)==a(i,2))

 c(i,2)=c(i,2)+round(rand*4-2);

 end

 elseif r>=.60

 while (c(i,3)==a(i,3))

 c(i,3)=((c(i,3)/100)+round(rand*2-1))*100;

 end

 end

end

c=clamp(c);

Performs crossover

84

%% Crossover operator

function [c d]=crossover(a,b) % Crossover matrix arguments a and b into

c

sa=size(a,1); % size a

sb=size(b,1); % size b

pa=floor(rand*sa)+1; % insert point

pb=floor(rand*sb)+1; % extraction point

c=a;

d=b;

if pb<sa, c(pa,1:3)=b(pb,1:3);

end

if pa<sb, d(pb,1:3)=a(pa,1:3);

end

Create a random matrix within allowed boundaries

%% Create from scratch

function c=create() % Create testmatrix c

lines=floor(rand*11+3);

for i=1:lines

 c(i,1)=floor(rand*3+32);

 c(i,2)=floor(rand*255);

 c(i,3)=round(rand*9)*100;

end

c=clamp(c);

Tests the command matrix code for consistency

%% Clamp values between allowed boundaries

function c=clamp(a)

min2=80; max2=182; % 32, motor 0 (Left, Right bounds)

min3=100; max3=140; % 33, motor 1 (Up, Down bounds)

min4=1; max4=250; % 34, motor 2 (Theta bounds)

for i=1:size(a,1)

 % clamp time

 if a(i,3)<0, a(i,3)=0; end

aa

85

 if a(i,3)>900, a(i,3)=900; end

 % clamp motors

 if (a(i,1)<32), a(i,1)=32; end

 if (a(i,1)>34), a(i,1)=34; end

 if (a(i,1)==32),

 if a(i,2)<min2, a(i,2)=min2; end;

 if a(i,2)>max2, a(i,2)=max2; end;

 end

 if (a(i,1)==33),

 if a(i,2)<min3, a(i,2)=min3; end;

 if a(i,2)>max3, a(i,2)=max3; end;

 end

 if (a(i,1)==34),

 if a(i,2)<min4, a(i,2)=min4; end;

 if a(i,2)>max4, a(i,2)=max4; end;

 end

end

c=a;

Generates the hash code for one solution

function h=hash(mat)

% h=hast(mat)

% h=solution of matrix mat

if nargin<1,

 mat=[32 hex2dec('50') 300;

 34 hex2dec('40') 200;

 32 hex2dec('B6') 300;

 34 hex2dec('C0') 200]; % 350024023B602C02

end;

name='';

for i=1:size(mat,1)

 pos=dec2hex(mat(i,2));

 if size(pos,2)<2 pos=['0' pos]; end

86

 name=[name num2str(mat(i,3)/100) pos dec2hex(mat(i,1)-32)];

 % delay position motor

end

h=name;

This retrieves the command matrix from a previously generated hash code.

function mat=hmat(name)

% h=hast(mat)

% h=solution of matrix mat

if nargin<1,

 name='350024023B602C02';

end;

s=size(name,2);

c=s/4;

mat=zeros(c,3);

for i=1:c

 mat(i,:)=[str2num(name(4))+32 hex2dec(name(2:3))

str2num(name(1))*100];

 if i<c name=name(5:s); end

 s=s-4;

end

Use this function to generate a video of the simulator’s swinging Ro.

function vid(mat,mode,time,avifilename,framerate,discard)

% vis(hsh,mode,time,framerate)

% Generate a video of the simulation output

% Use the matrix, Graph mode, Simulated time, AVI file-name,

% AVI frame rate and how many frames to discard before start

% as arguments

tic

87

if nargin<2,

 mode=1;

end

if nargin<3,

 time=5000;

end

if nargin<4,

 aviout=1;

 avifilename='video';

else

 aviout=1;

end

if nargin<5,

 framerate=5;

end

%% Simulation variables initialization

line=1;

wait=0;

data=[0 0];

[lines cols]=size(mat);

pos=[127 127 127]; % Initial position

dest=[127 127 127]; % Initial destination

step=[.333 .25 .6]; % Step in 1/1000 s

direction=[0 0 0]; % Motor direction

%% Evaluation variables initialization

ft=[0 0 0]; % Total force applied

aph=(pos(1)-127)/89.141; % Alpha angle

bt=-(pos(2)-92)/57.3; % Beta angle

th=(pos(3)-127)/84.667; % Theta angle

X=sin(th)*cos(aph)+cos(th)*sin(bt)*sin(aph);

Y=sin(th)*sin(aph)-cos(th)*sin(bt)*cos(aph);

Z=cos(th)*cos(bt);

88

RX=-cos(bt)*sin(aph);

RY=cos(bt)*cos(aph);

RZ=sin(bt);

normal=[X Y Z]; % Normal vector

ref=[RX RY RZ]; % Reference vector

%% Graph nitiation

fig = figure(1);

set(fig,...

 'Color',[1 1 1],...

 'InvertHardcopy','off',...

 'PaperUnits','points',...

 'PaperPosition',[1 311 640 480],...

 'PaperSize',[640 480],...

 'PaperType','<custom>');

clf;

if mode==0

 title('Motor positioning');

 set(gca,'Drawmode','Fast');

 axis([0 time 0 260]); hold on; box;

else

 title('Vectors');

 if aviout,

 set(fig,'DoubleBuffer','on');

 end

 set(gca,'Drawmode','Fast');

 plot3([-1 1 1 -1 -1],[1 1 -1 -1 1],[0 0 0 0 0],'-b','Erasemode','none');

 axis([-1 1 -1 1 -1 1]);hold on; box; grid on;

 p1=plot3([0 0 0 0 0 0],[0 0 0 0 0 0],[0 0 0 0 0

0],'-k','Erasemode','normal');

 p2=plot3([1 0 0],[0 1 0],[0 1 0],'-r','Erasemode','normal');

 p3=plot3([0 1 0],[0 1 0],[0 1 0],'-g','Erasemode','normal');

89

 drawnow;

end

%% Main Loop

user_entry = input('Press any key when ready:')

if aviout,

 aviobj = avifile(avifilename,'fps',25);

end

framecount=0;

discard=1500; % time to stabilize

for t=1:time

 %% Enter command

 if wait<1

 motor=mat(line,1)-31;

 newpos=mat(line,2);

 wait=mat(line,3);

 dest(motor)=newpos;

 line=line+1;

 if line>lines line=1;

 end

 end

 direction=((dest-1)>pos)-((dest+1)<pos);

 pos=pos+(step.*direction);

 wait=wait-1;

 %% Simulation process

 aph=(pos(1)-127)/89.141;

 bt=-(pos(2)-92)/57.3;

 th=(pos(3)-127)/84.667;

 X=sin(th)*cos(aph)+cos(th)*sin(bt)*sin(aph);

 Y=sin(th)*sin(aph)-cos(th)*sin(bt)*cos(aph);

 Z=cos(th)*cos(bt);

 RX=-cos(bt)*sin(aph);

 RY=cos(bt)*cos(aph);

90

 RZ=sin(bt);

 aref=ref;

 normal=[X Y Z];

 n=-normal;

 ref=[RX RY RZ];

 attack=aref-ref;

 impulse=(dot(attack,n)/dot(n,n))*n;

 ft=ft+impulse;

 % projection (dot(a,b)/dot(b,b))*b

 % [sqrt(X^2+Y^2+Z^2) X Y Z aph bt th]

 if mode==0 %% Graph 2D

 plot(t,pos(1),'r-','Markersize',3,'Erasemode','none');

 plot(t,pos(2),'y-','Markersize',3,'Erasemode','none');

 plot(t,pos(3),'b-','Markersize',3,'Erasemode','none');

 else %% Gpaph 3D

 ap=attack*100;

 g=impulse*100;

 set(p1,'Xdata',[0 -Z/16 RX Z/16 0 X/4]);

 set(p1,'Ydata',[0 X/16 RY -X/16 0 Y/4]);

 set(p1,'Zdata',[0 X/16 RZ -X/16 0 Z/4]);

 set(p2,'Xdata',[0 ap(1) 0]);

 set(p2,'Ydata',[0 ap(2) 0]);

 set(p2,'Zdata',[0 ap(3) 0]);

 set(p3,'Xdata',[0 g(1) 0]);

 set(p3,'Ydata',[0 g(2) 0]);

 set(p3,'Zdata',[0 g(3) 0]);

 end

 drawnow;

 framecount=framecount+1;

 data=[data;t impulse(2)];

 if framecount>framerate

 if aviout,

91

 if discard>0,

 discard=discard-framerate;

 else

 frame = getframe(gca);

 aviobj = addframe(aviobj,frame);

 end

 end

 framecount=0;

 end

end

if aviout,

 aviobj = close(aviobj);

end

ft

f=sqrt(ft(1)^2+ft(2)^2+ft(3)^2)

%% Graph offset

%legend('Motor 0','Motor 1','Motor 2',3);

Serial control application

This code in VB.net is the serial control application, used to interface the hash
commands generated by the MAS to the robotic actuators with correct timing.

Imports System.ComponentModel

Imports System.Threading

Public Class FormControl

 Private backgroundController As

System.ComponentModel.BackgroundWorker

 Delegate Sub SetTextCallback(ByVal [text] As String)

92

 Public Sub New()

 ' This call is required by the Windows Form Designer.

 InitializeComponent()

 backgroundController = New BackgroundWorker()

 backgroundController.WorkerReportsProgress = False

 backgroundController.WorkerSupportsCancellation = True

 AddHandler backgroundController.DoWork, New

DoWorkEventHandler(AddressOf backgroundController_DoWork)

 AddHandler backgroundController.RunWorkerCompleted, New

RunWorkerCompletedEventHandler(AddressOf

backgroundController_RunWorkerCompleted)

 updateStatus(String.Empty)

 End Sub

 ' Report an error

 Private Sub reportError(ByVal e As Exception)

 updateStatus("Error!")

 MessageBox.Show("The following error occurred: " +

ControlChars.CrLf + e.Message, "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 End Sub

 Private Sub reportError(ByVal message As String)

 updateStatus("Error!")

 MessageBox.Show("The following error occurred: " +

ControlChars.CrLf + message, "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error)

 End Sub

 Public Sub updateStatus(ByVal status As String)

 SetText(status)

 End Sub

 Private Sub SetText(ByVal msg As String)

93

 ' InvokeRequired required compares the thread ID of the

 ' calling thread to the thread ID of the creating thread.

 ' If these threads are different, it returns true.

 If Me.TexOut.InvokeRequired Then

 Dim d As New SetTextCallback(AddressOf SetText)

 Me.Invoke(d, New Object() {msg})

 Else

 Me.TexOut.AppendText(Chr(13) + Chr(10) & msg)

 If Me.TexOut.Text.Length > 5000 Then

 Me.TexOut.Text = Me.TexOut.Text.Substring(1000,

Me.TexOut.Text.Length - 1000)

 End If

 End If

 End Sub

 ' This executes in a separate thread

 Private Function sendControl(ByVal start As String, ByVal worker As

BackgroundWorker, ByVal e As DoWorkEventArgs) As Integer

 ' Open serial port

 Using com1 As IO.Ports.SerialPort = _

 My.Computer.Ports.OpenSerialPort("COM1")

 com1.BaudRate = 9600

 com1.DataBits = 8

 com1.Parity = IO.Ports.Parity.None

 com1.StopBits = IO.Ports.StopBits.One

 com1.DtrEnable = True

 Dim oEncoder As New System.Text.ASCIIEncoding

 Dim oEnc As System.Text.Encoding =

System.Text.ASCIIEncoding.GetEncoding(1252)

 com1.Encoding = System.Text.ASCIIEncoding.GetEncoding(1250)

 Me.SetText("COM1: (OK) " + com1.BaudRate.ToString + " " +

com1.DataBits.ToString + "-" + com1.Parity.ToString + "-" +

com1.StopBits.ToString + " Open=" + com1.IsOpen.ToString)

 ' Prepare data

 Dim i As Integer = 0

94

 Dim header As Byte = &HFF

 Dim cmd As Byte = &H21

 Dim pos As Byte = &H8A

 Dim chk As Byte = &H2B

 Dim t As Integer = 0

 Dim Buffer1 As Byte() = {header, cmd, pos, chk}

 Me.SetText("Positioning motor.")

 com1.Write("SerialControl initialized, Positioning:")

 com1.Write(Buffer1, 0, 4)

 Me.SetText(header.ToString + " " + cmd.ToString + " " +

pos.ToString + " " + chk.ToString + ", wait " + t.ToString + "ms")

 Me.SetText("---------------")

 While True

 ' Check for cancellation

 If worker.CancellationPending = True Then

 e.Cancel = True

 Exit While

 Else

 ' Routine here

 i = 0

 While i + 4 <= start.Length

 Integer.TryParse(start.Substring(i, 1).ToString,

t)

 t = t * 100

 i += 1

 pos = CByte("&h" + start.Substring(i, 2).ToString)

 i += 2

 cmd = 32 + CByte(start.Substring(i, 1).ToString)

 i += 1

 If pos = 255 Then

 Exit While

 End If

 chk = (cmd Xor pos) And 127

 ' send data trought serial port 1

 Dim Buffer2 As Byte() = {header, cmd, pos, chk}

 Me.SetText(header.ToString + " " + cmd.ToString +

95

" " + pos.ToString + " " + chk.ToString + ", wait " + t.ToString +

"ms")

 com1.Write(Buffer2, 0, 4)

 ' Wait for next command

 System.Threading.Thread.Sleep(t)

 End While

 Me.SetText("---------------")

 End If

 If pos = 255 Then

 Exit While

 End If

 End While

 ' MessageBox.Show(pos.ToString, "Error",

MessageBoxButtons.OK, MessageBoxIcon.Information)

 ' Close serial port

 com1.Close()

 End Using

 Return 1

 End Function

 ' Thread start/finish

 Sub backgroundController_DoWork(ByVal sender As Object, ByVal e As

DoWorkEventArgs)

 Dim start As String = CStr(e.Argument).Trim

 e.Result = sendControl(start, CType(sender, BackgroundWorker), e)

 End Sub

 Sub backgroundController_RunWorkerCompleted(ByVal sender As Object,

ByVal e As RunWorkerCompletedEventArgs)

 If e.Cancelled Then

 updateStatus("Cancelled.")

 ElseIf e.Error IsNot Nothing Then

 reportError(e.Error)

 Else

 updateStatus("Done!")

 End If

96

 enableControls()

 End Sub

 ' Disable/re-enable the controls

 Private Sub diseblecontrols()

 disableAccess()

 But1.Enabled = False

 But2.Enabled = False

 But3.Enabled = False

 But4.Enabled = False

 But5.Enabled = False

 But6.Enabled = False

 But7.Enabled = False

 But8.Enabled = False

 But9.Enabled = False

 ButtonSave.Enabled = False

 ButtonLoad.Enabled = False

 End Sub

 Private Sub enableControls()

 But1.Enabled = True

 But2.Enabled = True

 But3.Enabled = True

 But4.Enabled = True

 But5.Enabled = True

 But6.Enabled = True

 But7.Enabled = True

 But8.Enabled = True

 But9.Enabled = True

 ButtonSave.Enabled = True

 ButtonLoad.Enabled = True

 End Sub

 Private Sub kick(ByVal start As String, ByVal name As String)

 If start = String.Empty Then

 reportError("No control string defined!")

 Else

97

 diseblecontrols()

 updateStatus("Sending '" + name + "' data...")

 backgroundController.RunWorkerAsync(start)

 End If

 End Sub

 ' Buttons functionality

 Private Sub But1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles But1.Click

 kick(TextBox1.Text, Name1.Text)

 End Sub

 Private Sub But2_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles But2.Click

 kick(TextBox2.Text, Name2.Text)

 End Sub

 Private Sub But3_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles But3.Click

 kick(TextBox3.Text, Name3.Text)

 End Sub

 Private Sub But4_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles But4.Click

 kick(TextBox4.Text, Name4.Text)

 End Sub

 Private Sub But5_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles But5.Click

 kick(TextBox5.Text, Name5.Text)

 End Sub

 Private Sub But6_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles But6.Click

 kick(TextBox6.Text, Name6.Text)

 End Sub

 Private Sub But7_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles But7.Click

 kick(TextBox7.Text, Name7.Text)

 End Sub

 Private Sub But8_Click(ByVal sender As System.Object, ByVal e As

98

System.EventArgs) Handles But8.Click

 kick(TextBox8.Text, Name8.Text)

 End Sub

 Private Sub But9_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles But9.Click

 kick(TextBox9.Text, Name9.Text)

 End Sub

 ' Save and load Config (not implemented)

 Private Sub ButtonSave_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles ButtonSave.Click

 disableAccess()

 End Sub

 Private Sub disableAccess()

 ComboBox1.Enabled = False

 ComboBox2.Enabled = False

 ComboBox3.Enabled = False

 ComboBox4.Enabled = False

 CheckBox1.Enabled = False

 TextBox1.Enabled = False

 TextBox2.Enabled = False

 TextBox3.Enabled = False

 TextBox4.Enabled = False

 TextBox5.Enabled = False

 TextBox6.Enabled = False

 TextBox7.Enabled = False

 TextBox8.Enabled = False

 TextBox9.Enabled = False

 Name1.Enabled = False

 Name2.Enabled = False

 Name3.Enabled = False

 Name4.Enabled = False

 Name5.Enabled = False

 Name6.Enabled = False

 Name7.Enabled = False

 Name8.Enabled = False

 Name9.Enabled = False

99

 TexOut.Enabled = False

 updateStatus("Controls locked. Esc or keypad 0 to stop.")

 updateStatus("--------------------")

 End Sub

 Private Sub ButtonLoad_Click(ByVal sender As System.Object, ByVal e

As System.EventArgs) Handles ButtonLoad.Click

 ComboBox1.Enabled = True

 ComboBox2.Enabled = True

 ComboBox3.Enabled = True

 ComboBox4.Enabled = True

 CheckBox1.Enabled = True

 TextBox1.Enabled = True

 TextBox2.Enabled = True

 TextBox3.Enabled = True

 TextBox4.Enabled = True

 TextBox5.Enabled = True

 TextBox6.Enabled = True

 TextBox7.Enabled = True

 TextBox8.Enabled = True

 TextBox9.Enabled = True

 Name1.Enabled = True

 Name2.Enabled = True

 Name3.Enabled = True

 Name4.Enabled = True

 Name5.Enabled = True

 Name6.Enabled = True

 Name7.Enabled = True

 Name8.Enabled = True

 Name9.Enabled = True

 TexOut.Enabled = True

 updateStatus("--------------------")

 updateStatus("Controls Unlocked.")

 End Sub

 Private Sub ButtonCancel_Click(ByVal sender As System.Object, ByVal

100

e As System.EventArgs) Handles ButtonCancel.Click

 If backgroundController.IsBusy Then

 updateStatus("Interrupting...")

 backgroundController.CancelAsync()

 End If

 updateStatus("Idle.")

 End Sub

End Class

101

	Chapter 1 Introduction
	1.1. Objective
	1.2. Motivation
	1.3. Previous Works
	1.4. Approach
	1.5. Thesis Organization

	Chapter 2 Fundamental Concepts
	2.1. Working with genetic Algorithms
	2.2. Electronic Multi-Agents
	2.3. Object Oriented Programming
	2.4. Parallel Computing
	2.5. Database

	Chapter 3 Project Implementation
	3.1. The Robotized Experimental Rowing Mechanism “Ro-bot”
	3.2. Control Code Representation
	3.3. The Simulation
	3.4. Agents
	3.5. The Database
	3.6. Multi-variable Space Partitioning
	3.7. Spreading Agents Trough Networked Computers
	3.8. Selected Parameters for MAS and GA

	Chapter 4 Simulation Results
	4.1. Simulating Well Known Modes
	4.1.1. Specification and Simulation of the Traditional Swing
	4.1.2. Simulation of the known mode “Rotated Blade”

	4.2. Optimal Rowing Mode Found in Two-degrees of Freedom
	4.2.1. GA Optimized Two-Degrees of Freedom rowing mode

	4.3. New Rowing Modes Found in Three-degrees of Freedom
	4.3.1. The X-Swing rowing
	4.3.2. The M-Swing rowing
	4.3.3. The U-Swing rowing

	4.4. Multi-Directional Modes

	Chapter 5 Experimental Verification
	5.1. Experiment Description
	5.1.1. Cruise Time from Rest (T1)
	5.1.2. Cruise Time at Constant Speed (T2)

	5.2. Experimental Results

	Chapter 6 Computational Analysis
	6.1. The Single-Threaded Model
	6.2. The Multi-Threaded Model
	6.3. The Distributed Computing Model
	6.4. Model Comparison

	Chapter 7 Discussion and Conclusions
	7.1. Discussion
	7.2. Conclusion
	7.3. Suggestions for Future Works

	Chapter 8 References
	Appendix – Source Codes

