
EVOLUTIONARY SEARCH FOR OPTIMIZATION OF FUZZY LOGIC
CONTROLLERS

Rogério Neves, Marcio Lobo Netto

Polytechnic School, University of São Paulo

ABSTRACT

The specification of Fuzzy Logic Controllers (FLC)
generally requires a specialist or close collaboration with a
specialist who holds the linguistic operation rules of the
system. Many times perhaps the rules may be not
expressed efficiently in formal means, due to complexity
or excessive number of variations and/or combinations
involved, but sometimes there may be no specialist at all
for the system in study. For these cases, we suggest an
autonomous method of definition and optimization of
Fuzzy Logic Controllers, making use of heuristics,
concepts of Evolutionary Search, Genetic Algorithms and
Multi-Agents in determination and optimization of
parameters for an automated control system.

1. INTRODUCTION

Since the introduction of Fuzzy Logic by Zadeh [1], many
attempts have been made in order to apply the uncertainly
associated with human thinking, expressed by natural
language, to automated control systems. From the most
fruitful, Fuzzy Logic Controllers (FLC) and Fuzzy
Algorithms [2][3] are largely applied in the specification
of automated control systems for early human-controlled
systems. As long nothing is perfect, we still need a
specialist to define verbally how to manually operate the
system. Sometimes, perhaps the specialist may not be
available or even exist for the system in study.

We suggest here an autonomous method of definition and
optimization of Fuzzy Logic Controllers, by applying
concepts of Artificial Life, Evolutionary Search/Genetic
Algorithms and Multi-Agents. The method consists in
express the system in terms of input, output and rule
parameters, using computer simulations to search and
refine the parameters for optimum values of objective
functions, making use of the massive processing capability
of modern computers to test and qualitatively evaluate the
parameters for multiple instances at once. The method can
be divided in two main steps:

• System study: the relevant system attributes are
identified; input and output parameters are defined;

• Computer simulations: the system is simulated; the
parameters are evaluated and optimized by genetic
algorithms.

To demonstrate the method a simple case is presented,
where the input and output parameters are clearly
recognizable and the connections can be intuitively
defined for analogies with the autonomous method. The
method is described as the problem is proposed in section
2, the experiment conduction is presented in section 3, the
results obtained are presented in section 4 and final
conclusions are made in section 5.

2. PROBLEM OUTLINE

Supposing that the system we wish to control is an
autonomous robot. For now, the only knowledge required
about the system is the input and output parameters.
Studying the system we may find the input variables
associated with available sensors, and output variables
depending on the control structure involved (switches,
step-motors or power regulators, etc.).

Once the system outline is clear, it’s time to define the
purpose of the robot, which will model the fitness function
and simulation rules. Supposing it will be designed to be a
resource collector, ignoring details such as resource kind,
terrain type, operating conditions, it does basically identify
certain kinds of objects, rotate, move to, stop and collect.
The main operations will be defined in the simulation as
functions, which will accept parameters and return some
feedback. So, for this experiment, the functions will be
defined as follows:

§ TRACK: Read scene, expressing objects in terms of

linguistic variables.
§ ROTATE (angle): Rotate angle in degrees.
§ MOVE (speed): Move with desired speed.
§ CATCH: Call routine to catch the object, returns

success or fail.

In each program cycle (instant), the possible operations
are: track, move and rotate or track and catch.

2.1. Tracking

When called the function performs calculations in the
scene, locating objects and expressing them in terms of
linguistic variables (representing sensor readings). Real
sensors may have limitations in range, so let’s define max-
angle and max-distance bounding the covered area.

As input parameters, the linguistic variables D and L
represents respectively distance and lateral displacement
of the object relative to the robot’s position, the variables
gives pertinence values to fuzzy sets of all objects in the
robot’s view range (between -max-angle/2 and +max-
angle/2 with distance < max-distance). The definition of
fuzzy sets must comply with sensor’s reliability,
considering factors such resolution, error level and other
physical limitations. Here we will minimize the number of
fuzzy sets, describing by five sets the displacement and by
four sets the distance.

Figure 1: Fuzzy sets belonging to the linguistic variable
lateral displacement (L), the variables l1 and l2 demarks

the crossover points and are used to describe de
distribution.

Figure 2: Fuzzy sets in the linguistic variable distance

(D), the variables b1, b2 and b3 here demarks the
crossover points.

The function needs to return only the pair of variables (D,
L) associated with the closer object in range, or notify in
case nothing was detected (no objects in range). If we are
dealing with crisp controls, which need precise values to
operate, this is the time to select the defusification strategy
to apply. Some applicants are: Max criterion, mean of
maximum method, center of area, center of mass, or
greater pertinence [3].

Figure 3: Objects in the scene described in Table I.

Table I: Description of the scene in Figure 3

Object Distance Lateral displacement
1 (closest) 0.36/1, 0.64/2 0.86/0, 0.14/1

2 0.94/2, 0.06/3 0.75/-1, 0.25/-2
3 0.29/3, 0.71/4 0.56/1, 0.44/2

2.2. Moving and rotating

The output refers to the system’s control capabilities. Here
will be imposed that the control assumes only “crisp”
values, in case, only certain values of Speed and Angle are
allowed, just like in a control panel, where switches (or
buttons) activates the actions performed.

Figure 4: The “Crisp” control panel

We may denote that only certain combinations are allowed
in the control proposed, and no selection implies the robot
stand still. The experiment algorithm shall avoid
inconsistent combinations.

Figure 5: Representing the possible outputs for “rotate”

function as Fuzzy Singletons.

2.3. Catching

Catching executes the call to the capturing mechanism (ex.
Suction pipe, mechanic arm, etc.), which supposes that the
object is in the right place at time called. Once activated,
the function executes the call and returns true or false,
according to catch success.

Left

Center

Right Very Right

-l1 l1 l2

Very Left

-l2

L -2 -1 0 1 2

Very close Close Far Very far
1

0
b1 b2 b3

1 2 3 4 D

Speed 1

Null

Speed 1 Speed 2

-2 2 5

Speed 2

-5 o o o o 0 o

Turn Right Turn Left

The function checks if the object is in the right position
relative to the robot and below a specified tolerance
threshold, if so, it executes the exclusion of the object
from the scene adding to the robot’s score. Softening the
threshold in the early generations, hardening during
experiment until the desired tolerance is reached, grants a
faster adaptation of the breed, severally reducing the
evolution time.

The provided feedback influence decisions in the next
instants (ex. If FAIL then retry, leave or move a bit and
retry, etc.), in fact, feedback is an important part of the
process, increasing the system’s intelligence as it knows
more about what’s happening around.

3. EVOLVING THE EXPERIMENT

According to what was presented, the main problem is to
map a multi-dimensional space of inputs into another
multi-dimensional space of outputs. This can be done
using functions, connections or inference rules. Dealing
with fuzzy logic, is natural to express actions using
inference rules, but many times, combination of strategies
may present better results. The fact is that all the possible
strategies must be available to the algorithm to choose,
first randomly, and then improved by genetic algorithms,
changed, tried and discarded, until an efficient strategy is
found. The inference rules have the form:

IF D is FAR and L is CENTER then MOVE FAST
IF D is CLOSE and L is LEFT then TURN LEFT
IF D is VERY CLOSE and L is CENTER then CATCH

Figure 6: The two-dimensional input variable space,

assuming symmetry for lateral displacement.

From scratch, we don’t know any of the rules, just the
combinatory explosion of the inputs and outputs.
Excluding the forbidden combinations, the remaining will
be available to the instances “creation” algorithm.

3.1. Creating instances

Each robot is described by a genetic code or, for
simplicity, just “DNA”, which is nothing more than a
string containing all the robot’s specific parameters
including input/output rule connections for the inference
rules and delimiters l1, l2, b1, b2, b3. Simulation
parameters such position, direction vectors, robot’s

energy, state variables, and number of captured targets can
also be stored into the string, despite it classically
shouldn’t belong to the DNA, it will simplify the message
passing to functions, once the string contain all the
information about the robot. Here, the DNA represents the
string containing the robot’s individualistic parameters.

In the beginning of the simulation, a number n of robots
are created with random parameters and put together into a
virtual arena, which contains m target objects scattered all
over. The parameters for the robots must be draw from
allowed values, and the DNA tested to exclude invalid
combinations of parameters in order to prevent creation of
useless and not-working units. Some previous test
concerning the generated DNA’s functionality may
severally reduce the experiment time. In the start of the
simulation, control parameters are reset, setting all robots
initial energy to Ei, zeroing their captured targets and
placing them randomly into the arena with random
direction vectors.

3.2. Evaluating

The simulation accuracy is an important matter concerning
the system efficiency, and must express the dynamics of
the system, such physical conditions and competition
rules, in order to evaluate the parameters. To simplify the
implementation, second order effects can be ignored in the
simulation (such friction, shape, etc.), but more details
about the real operating conditions imply best fit of found
parameters in the physical model.

The objective functions (represented by the fitness
expression) may represent the desired result of the
evolution process. In the case, we must want to reward
robots that score more objects in less time, spending the
minimal amount of energy. So, the expression for the
objective function can be stated as:

dtimeElapseEfEi
redobjectsSco

onSatisfacti
).(−

=

Expressing the degree of satisfaction in terms of captured
objects, initial energy Ei, final energy Ef and the time
elapsed in the process. Some considerations shall be made
concerning the simulation dynamics:

§ Energy consumption: Movements, rotations and call

to internal function (such catch) consumes variable
amount of energy, which need not to express the real
consumption, but the desired behavior, imposing
energy losses for unwanted operations. Once the
available energy is exhausted the robot is no longer
processed and its elapsed time is stopped.

§ Time penalties: Robot’s call for functions must be
succeeded by a period of inactivity, in which the robot
will wait for some action to be performed. Once
again, objectives can be expressed by time penalties,
implying large time losses for successive ineffective
or undesired calls.

§ Damage control: Actions that may result in some
damage or hazardous movements (such collisions and
bumps) shall be penalized with energy loss, inactive
time, or by inserting a proper “damage” variable into
the satisfaction function for further evaluation.

Several stop criteria must be set in order to minimize the
simulation round time, for the experiment, the chosen stop
conditions are:

§ Timeout: A maximum experiment time is reached;
§ Resources over: All objects captured;
§ Energy shortage: All robots stopped due lack of

energy.

3.3. Evolution

Once one of the stop conditions is reached, the round is
ended and the time to express the selection rules has come,
like in natural selection, the most adapted will survive,
some will evolve and many will decease. The first step is
to generate a list of instances ordered by greater
Satisfaction value, selecting the instances that will be kept
from the top of the list.

There are many evolutionary strategies than can be used to
evolve the selected instances, such mutation, cross-over,
reproducing bests, all are found in referred literatures
[4][5][6]. The evolution strategy determines how some
instance can possibly achieve the optimal value, some
strategies may take longer and some may never escape
from local maximums, but best results can be reached
using a combination of several strategies.

One possible evolution strategy, supposing we have
initially hundred instances, for the best twelve:

§ Save the first place, identifying in the name the fitness

value. This will grant the possibility to recur to some
previous solution with better score in case it is
needed;

§ Keep the best ten unchanged in the next round, plus,
reproduce them with mutation factor of 1% to 10%.
This will give the chance to generate better instances.
Lower mutation rates are recommended in this case;

§ Apply mutation to the remaining instances, granting
the chance to improve its performance. Higher
mutation rates (5% to 20%) are recommended here;

§ Cross-over instances can be generated from the top
selected instances, combining the DNA from
successful pairs randomly, granting the chance to
escape local maximums;

§ New instances can be generated to fill the required
number for a new simulation, giving the chance to
reach off local solutions in space;

§ Combination of cross-over and mutation can be
performed. Greater the number of instances in the
simulation, greater the chance to reach the global
maximum for the satisfaction expression.

Once all the new instances are generated, the arena must
be rebuilt, robots randomly distributed with states reset
and objects reposed, so the simulation restarts.

4. RESULTS

In the performed experiment, for 400 generations, a value
close to the experiment’s maximum was achieved in the
first 100 generations, and the maximum in around 300
generations. The competition gets more challenging as the
instances generated are better adapted, causing the
simulation time to decrease as the resources are consumed
faster by specialized breeds and sometimes the overall
satisfaction falls slightly due to more efficient instances
competing for the available resources. Results and
animations of the experiment can be found in [7].

Figure 7: Qualitative analysis plot. Satisfaction value for

the best 10 from100 instances in 400 generations

Better instances are progressively generated as the
experiment evolves indicating that at some time the
parameters may converge to some optimal value, but
nothing grants that the global maximum for the
Satisfaction will be ever achieved (except for exhaustive
search, where all combinations are tested, when
experiment time is very long or in cases where analytic
methods can be applied, leading to specific points in the
space of solutions), the only guarantee is that the chance to
achieve a maximum value increases slightly with the
number of generations evolved.

5. CONCLUSIONS

The described experiment demonstrates that the method
generates good solutions for the problem in study. The
method can be extended to systems where the control
process is unknown, as well as to systems where the
control process is to complex for intuitive deduction,
where rules involve a large number of implications, input
and output parameters.

Once resolved, the optimal parameters can be expressed in
formal rules, algorithms or fuzzy algorithms to be
programmed into an ordinary microprocessor and inserted
into the hardware to perform the specific task.

6. REFERENCES

[1] Zadeh, Lotfi A., Outline of a New Approach to the
Analysis of Complex Systems and Decision Processes,
IEEE Transactions on Systems, Man, and Cybernetics,
volume SMC3, no 1, January 1973.

[2] Lee, Chuen Chien, Fuzzy Logic in Control Systems:
Fuzzy Logic Controller - Part I, IEEE Transactions on
Systems, Man, and Cybernetics, volume 20, no 2, March/
April 1990.

[3] Lee, Chuen Chien, Fuzzy Logic in Control Systems:
Fuzzy Logic Controller - Part II, IEEE Transactions on
Systems, Man, and Cybernetics, volume 20, no 2, March /
April 1990.

[4] Bentley, P. J. (Editor), Evolutionary Design by
Computers, Morgan Kauffmann ISBN: 1-55860-605-X
(1999)

[5] Michalewic, Z., Genetic Algorithms + Data
Structures = Evolution Programs, Springer Verlag ISBN:
3-540-60676-9 (1996)

[6] Mitchell, M., An Introduction to Genetic Algorithms,
MIT Press ISBN: 0-262-13316-4 (1997)

[7] Neves, Rogério (rponeves@lsi.usp.br), home page
http://www.lsi.usp.br/~rponeves/work/robot

