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ABSTRACT 

 
The specification of Fuzzy Logic Controllers (FLC) 
generally requires a specialist or close collaboration with a 
specialist who holds the linguistic operation rules of the 
system. Many times perhaps the rules may be not 
expressed efficiently in formal means, due to complexity 
or excessive number of variations and/or combinations 
involved, but sometimes there may be no specialist at all 
for the system in study. For these cases, we suggest an 
autonomous method of definition and optimization of 
Fuzzy Logic Controllers, making use of heuristics, 
concepts of Evolutionary Search, Genetic Algorithms and 
Multi-Agents in determination and optimization of 
parameters for an automated control system. 
 
 

1. INTRODUCTION 
 
Since the introduction of Fuzzy Logic by Zadeh [1], many 
attempts have been made in order to apply the uncertainly 
associated with human thinking, expressed by natural 
language, to automated control systems. From the most 
fruitful, Fuzzy Logic Controllers (FLC) and Fuzzy 
Algorithms [2][3] are largely applied in the specification 
of automated control systems for early human-controlled 
systems. As long nothing is perfect, we still need a 
specialist to define verbally how to manually operate the 
system. Sometimes, perhaps the specialist may not be 
available or even exist for the system in study. 
 
We suggest here an autonomous method of definition and 
optimization of Fuzzy Logic Controllers, by applying 
concepts of Artificial Life, Evolutionary Search/Genetic 
Algorithms and Multi-Agents. The method consists in 
express the system in terms of input, output and rule 
parameters, using computer simulations to search and 
refine the parameters for optimum values of objective 
functions, making use of the massive processing capability 
of modern computers to test and qualitatively evaluate the 
parameters for multiple instances at once. The method can 
be divided in two main steps: 
 

• System study: the relevant system attributes are 
identified; input and output parameters are defined; 

• Computer simulations: the system is simulated; the 
parameters are evaluated and optimized by genetic 
algorithms. 

 
To demonstrate the method a simple case is presented, 
where the input and output parameters are clearly 
recognizable and the connections can be intuitively 
defined for analogies with the autonomous method. The 
method is described as the problem is proposed in section 
2, the experiment conduction is presented in section 3, the 
results obtained are presented in section 4 and final 
conclusions are made in section 5. 
 

2. PROBLEM OUTLINE 
 
Supposing that the system we wish to control is an 
autonomous robot. For now, the only knowledge required 
about the system is the input and output parameters. 
Studying the system we may find the input variables 
associated with available sensors, and output variables 
depending on the control structure involved (switches, 
step-motors or power regulators, etc.). 
 
Once the system outline is clear, it’s time to define the 
purpose of the robot, which will model the fitness function 
and simulation rules. Supposing it will be designed to be a 
resource collector, ignoring details such as resource kind, 
terrain type, operating conditions, it does basically identify 
certain kinds of objects, rotate, move to, stop and collect. 
The main operations will be defined in the simulation as 
functions, which will accept parameters and return some 
feedback. So, for this experiment, the functions will be 
defined as follows: 
 
§ TRACK: Read scene, expressing objects in terms of 

linguistic variables. 
§ ROTATE (angle): Rotate angle in degrees. 
§ MOVE (speed): Move with desired speed. 
§ CATCH: Call routine to catch the object, returns 

success or fail. 
 



In each program cycle (instant), the possible operations 
are: track, move and rotate or track and catch. 
 
2.1. Tracking 
 
When called the function performs calculations in the 
scene, locating objects and expressing them in terms of 
linguistic variables (representing sensor readings). Real 
sensors may have limitations in range, so let’s define max-
angle and max-distance bounding the covered area. 
 
As input parameters, the linguistic variables D and L 
represents respectively distance and lateral displacement 
of the object relative to the robot’s position, the variables 
gives pertinence values to fuzzy sets of all objects in the 
robot’s view range (between -max-angle/2 and +max-
angle/2 with distance < max-distance). The definition of 
fuzzy sets must comply with sensor’s reliability, 
considering factors such resolution, error level and other 
physical limitations. Here we will minimize the number of 
fuzzy sets, describing by five sets the displacement and by 
four sets the distance. 
 

 
Figure 1: Fuzzy sets belonging to the linguistic variable 
lateral displacement (L), the variables l1 and l2 demarks 

the crossover points and are used to describe de 
distribution. 

 

 
Figure 2: Fuzzy sets in the linguistic variable distance 

(D), the variables b1, b2 and b3 here demarks the 
crossover points. 

 
The function needs to return only the pair of variables (D, 
L) associated with the closer object in range, or notify in 
case nothing was detected (no objects in range). If we are 
dealing with crisp controls, which need precise values to 
operate, this is the time to select the defusification strategy 
to apply. Some applicants are: Max criterion, mean of 
maximum method, center of area, center of mass, or 
greater pertinence [3]. 

 
Figure 3: Objects in the scene described in Table I. 

 
Table I: Description of the scene in Figure 3 

Object Distance Lateral displacement 
1 (closest) 0.36/1, 0.64/2 0.86/0, 0.14/1 

2 0.94/2, 0.06/3 0.75/-1, 0.25/-2 
3 0.29/3, 0.71/4 0.56/1, 0.44/2 

  
2.2. Moving and rotating 
 
The output refers to the system’s control capabilities. Here 
will be imposed that the control assumes only “crisp” 
values, in case, only certain values of Speed and Angle are 
allowed, just like in a control panel, where switches (or 
buttons) activates the actions performed. 
 

 
 

Figure 4: The “Crisp” control panel 
 
We may denote that only certain combinations are allowed 
in the control proposed, and no selection implies the robot 
stand still. The experiment algorithm shall avoid 
inconsistent combinations. 
 

 
Figure 5: Representing the possible outputs for “rotate” 

function as Fuzzy Singletons. 
 
2.3. Catching 
 
Catching executes the call to the capturing mechanism (ex. 
Suction pipe, mechanic arm, etc.), which supposes that the 
object is in the right place at time called. Once activated, 
the function executes the call and returns true or false, 
according to catch success. 
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The function checks if the object is in the right position 
relative to the robot and below a specified tolerance 
threshold, if so, it executes the exclusion of the object 
from the scene adding to the robot’s score. Softening the 
threshold in the early generations, hardening during 
experiment until the desired tolerance is reached, grants a 
faster adaptation of the breed, severally reducing the 
evolution time. 
 
The provided feedback influence decisions in the next 
instants (ex. If FAIL then retry, leave or move a bit and 
retry, etc.), in fact, feedback is an important part of the 
process, increasing the system’s intelligence as it knows 
more about what’s happening around. 
 

3. EVOLVING THE EXPERIMENT 
 
According to what was presented, the main problem is to 
map a multi-dimensional space of inputs into another 
multi-dimensional space of outputs. This can be done 
using functions, connections or inference rules. Dealing 
with fuzzy logic, is natural to express actions using 
inference rules, but many times, combination of strategies 
may present better results. The fact is that all the possible 
strategies must be available to the algorithm to choose, 
first randomly, and then improved by genetic algorithms, 
changed, tried and discarded, until an efficient strategy is 
found. The inference rules have the form: 
 
IF D is FAR and L is CENTER then MOVE FAST 
IF D is CLOSE and L is LEFT then TURN LEFT 
IF D is VERY CLOSE and L is CENTER then CATCH 
 

 
Figure 6: The two-dimensional input variable space, 

assuming symmetry for lateral displacement. 
 
From scratch, we don’t know any of the rules, just the 
combinatory explosion of the inputs and outputs. 
Excluding the forbidden combinations, the remaining will 
be available to the instances “creation” algorithm. 
 
3.1. Creating instances 
 
Each robot is described by a genetic code or, for 
simplicity, just “DNA”, which is nothing more than a 
string containing all the robot’s specific parameters 
including input/output rule connections for the inference 
rules and delimiters l1, l2, b1, b2, b3. Simulation 
parameters such position, direction vectors, robot’s 

energy, state variables, and number of captured targets can 
also be stored into the string, despite it classically 
shouldn’t belong to the DNA, it will simplify the message 
passing to functions, once the string contain all the 
information about the robot. Here, the DNA represents the 
string containing the robot’s individualistic parameters. 
 
In the beginning of the simulation, a number n of robots 
are created with random parameters and put together into a 
virtual arena, which contains m target objects scattered all 
over. The parameters for the robots must be draw from 
allowed values, and the DNA tested to exclude invalid 
combinations of parameters in order to prevent creation of 
useless and not-working units. Some previous test 
concerning the generated DNA’s functionality may 
severally reduce the experiment time. In the start of the 
simulation, control parameters are reset, setting all robots 
initial energy to Ei, zeroing their captured targets and 
placing them randomly into the arena with random 
direction vectors. 
 
3.2. Evaluating 
 
The simulation accuracy is an important matter concerning 
the system efficiency, and must express the dynamics of 
the system, such physical conditions and competition 
rules, in order to evaluate the parameters. To simplify the 
implementation, second order effects can be ignored in the 
simulation (such friction, shape, etc.), but more details 
about the real operating conditions imply best fit of found 
parameters in the physical model. 
 
The objective functions (represented by the fitness 
expression) may represent the desired result of the 
evolution process. In the case, we must want to reward 
robots that score more objects in less time, spending the 
minimal amount of energy. So, the expression for the 
objective function can be stated as: 
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Expressing the degree of satisfaction in terms of captured 
objects, initial energy Ei, final energy Ef and the time 
elapsed in the process. Some considerations shall be made 
concerning the simulation dynamics: 
 
§ Energy consumption: Movements, rotations and call 

to internal function (such catch) consumes variable 
amount of energy, which need not to express the real 
consumption, but the desired behavior, imposing 
energy losses for unwanted operations. Once the 
available energy is exhausted the robot is no longer 
processed and its elapsed time is stopped.  



§ Time penalties: Robot’s call for functions must be 
succeeded by a period of inactivity, in which the robot 
will wait for some action to be performed. Once 
again, objectives can be expressed by time penalties, 
implying large time losses for successive ineffective 
or undesired calls. 

§ Damage control: Actions that may result in some 
damage or hazardous movements (such collisions and 
bumps) shall be penalized with energy loss, inactive 
time, or by inserting a proper “damage” variable into 
the satisfaction function for further evaluation. 

 
Several stop criteria must be set in order to minimize the 
simulation round time, for the experiment, the chosen stop 
conditions are: 
 
§ Timeout: A maximum experiment time is reached; 
§ Resources over: All objects captured; 
§ Energy shortage: All robots stopped due lack of 

energy. 
 
3.3. Evolution 
  
Once one of the stop conditions is reached, the round is 
ended and the time to express the selection rules has come, 
like in natural selection, the most adapted will survive, 
some will evolve and many will decease. The first step is 
to generate a list of instances ordered by greater 
Satisfaction value, selecting the instances that will be kept 
from the top of the list. 
 
There are many evolutionary strategies than can be used to 
evolve the selected instances, such mutation, cross-over, 
reproducing bests, all are found in referred literatures 
[4][5][6]. The evolution strategy determines how some 
instance can possibly achieve the optimal value, some 
strategies may take longer and some may never escape 
from local maximums, but best results can be reached 
using a combination of several strategies. 
 
One possible evolution strategy, supposing we have 
initially hundred instances, for the best twelve: 
  
§ Save the first place, identifying in the name the fitness 

value. This will grant the possibility to recur to some 
previous solution with better score in case it is 
needed; 

§ Keep the best ten unchanged in the next round, plus, 
reproduce them with mutation factor of 1% to 10%. 
This will give the chance to generate better instances. 
Lower mutation rates are recommended in this case; 

§ Apply mutation to the remaining instances, granting 
the chance to improve its performance. Higher 
mutation rates (5% to 20%) are recommended here; 

§ Cross-over instances can be generated from the top 
selected instances, combining the DNA from 
successful pairs randomly, granting the chance to 
escape local maximums; 

§ New instances can be generated to fill the required 
number for a new simulation, giving the chance to 
reach off local solutions in space; 

§ Combination of cross-over and mutation can be 
performed. Greater the number of instances in the 
simulation, greater the chance to reach the global 
maximum for the satisfaction expression. 

 
Once all the new instances are generated, the arena must 
be rebuilt, robots randomly distributed with states reset 
and objects reposed, so the simulation restarts. 
 

4. RESULTS 
 
In the performed experiment, for 400 generations, a value 
close to the experiment’s maximum was achieved in the 
first 100 generations, and the maximum in around 300 
generations. The competition gets more challenging as the 
instances generated are better adapted, causing the 
simulation time to decrease as the resources are consumed 
faster by specialized breeds and sometimes the overall 
satisfaction falls slightly due to more efficient instances 
competing for the available resources. Results and 
animations of the experiment can be found in [7]. 
 

 
Figure 7: Qualitative analysis plot. Satisfaction value for 

the best 10 from100 instances in 400 generations 
 
Better instances are progressively generated as the 
experiment evolves indicating that at some time the 
parameters may converge to some optimal value, but 
nothing grants that the global maximum for the 
Satisfaction will be ever achieved (except for exhaustive 
search, where all combinations are tested, when 
experiment time is very long or in cases where analytic 
methods can be applied, leading to specific points in the 
space of solutions), the only guarantee is that the chance to 
achieve a maximum value increases slightly with the 
number of generations evolved. 
 
 



5. CONCLUSIONS 
 
The described experiment demonstrates that the method 
generates good solutions for the problem in study. The 
method can be extended to systems where the control 
process is unknown, as well as to systems where the 
control process is to complex for intuitive deduction, 
where rules involve a large number of implications, input 
and output parameters. 
 
Once resolved, the optimal parameters can be expressed in 
formal rules, algorithms or fuzzy algorithms to be 
programmed into an ordinary microprocessor and inserted 
into the hardware to perform the specific task. 
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