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Semi-Supervised Learning 
Supervised Learning = learning from labeled 

data. Dominant paradigm in Machine Learning. 
•  E.g, say you want to train an email classifier 

to distinguish spam from important messages 
•  Take sample S of data, labeled according to 

whether they were/weren’t spam. 
•  Train a classifier (like SVM, decision tree, 

etc) on S.  Make sure it’s not overfitting. 
•  Use to classify new emails.  



Basic paradigm has many successes 
•  recognize speech, 
•  steer a car, 
•  classify documents 
•  classify proteins 
•  recognizing faces, objects in images 
•  ... 
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Need to pay someone to do it, requires special testing,… 



However, for many problems, labeled 
data can be rare or expensive.  

 
Unlabeled data is much cheaper. 

 [From Jerry Zhu] 
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However, for many problems, labeled 
data can be rare or expensive.  

 
Unlabeled data is much cheaper. 

 
Can we make use of cheap 

unlabeled data? 
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Semi-Supervised Learning 
Can we use unlabeled data to augment a 

small labeled sample to improve learning? 

But unlabeled 
data is missing 

the most 
important info!! But maybe still has 

useful regularities 
that we can use. 

But… But… But… 



Semi-Supervised Learning 
Substantial recent work in ML.  A number of 

interesting methods have been developed. 
This talk: 
•  Discuss several diverse methods for taking 

advantage of unlabeled data. 



Method 1:   
 

Expectation- 
Maximization 
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How to use unlabeled data  
•  One way is to use the EM algorithm 

–  EM: Expectation Maximization 
•  The EM algorithm is a popular iterative algorithm 

for maximum likelihood estimation in problems 
with missing data.  

•  The EM algorithm consists of two steps,  
–  Expectation step, i.e., filling in the missing data  
–  Maximization step – calculate a new maximum a 

posteriori estimate for the parameters.  
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Incorporating unlabeled Data with 
EM (Nigam et al, 2000) 

•  Basic EM 
•  Augmented EM with weighted unlabeled 

data 
•  Augmented EM with multiple mixture 

components per class 
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Algorithm Outline 
1.  Train a classifier with only the labeled 

documents. 
2.  Use it to probabilistically classify the 

unlabeled documents. 
3.  Use ALL the documents to train a new 

classifier. 
4.  Iterate steps 2 and 3 to convergence. 
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Basic Algorithm 
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Basic EM: E Step & M Step 
 �
E 
Step:  

M Step: 
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The problem 
•  It has been shown that the EM algorithm in Fig. 

5.1 works well if the 
–  The two mixture model assumptions for a particular 

data set are true. 
•  The two mixture model assumptions, however, can 

cause major problems when they do not hold. In 
many real-life situations, they may be violated.  

•  It is often the case that a class (or topic) 
contains a number of sub-classes (or sub-topics).  
–  For example, the class Sports may contain documents 

about different sub-classes of sports, Baseball, 
Basketball, Tennis, and Softball. 

•  Some methods to deal with the problem.  
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Weighting the influence of 
unlabeled examples by factor µ  

New M step: 

The prior probability also needs to be weighted.  
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Experimental Evaluation 
•  Newsgroup postings  

–  20 newsgroups, 1000/group 
•  Web page classification  

–  student, faculty, course, project 
–  4199 web pages 

•  Reuters newswire articles  
–  12,902 articles 
–  10 main topic categories 
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20 Newsgroups  
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20 Newsgroups 



Method 2:   
 

Co-Training 



Co-training 
[Blum&Mitchell’98]  
Many problems have two different sources of 

info you can use to determine label. 
E.g., classifying webpages: can use words on page or 

words on links pointing to the page. 
My Advisor Prof. Avrim Blum My Advisor Prof. Avrim Blum 

x2- Text info x1- Link info x - Link info & Text info 



Co-training 
Idea: Use small labeled sample to learn initial rules. 

–  E.g., “my advisor” pointing to a page is a good 
indicator it is a faculty home page. 

–  E.g., “I am teaching” on a page is a good indicator 
it is a faculty home page. 

my advisor 



Co-training 
Idea: Use small labeled sample to learn initial rules. 

–  E.g., “my advisor” pointing to a page is a good 
indicator it is a faculty home page. 

–  E.g., “I am teaching” on a page is a good indicator 
it is a faculty home page. 

Then look for unlabeled examples where one rule is 
confident and the other is not. Have it label the 
example for the other.  

 
 
 
Training 2 classifiers, one on each type of info.  

Using each to help train the other. 

hx1,x2i 
hx1,x2i 
hx1,x2i 

hx1,x2i 
hx1,x2i 
hx1,x2i 



Co-training 
Turns out a number of problems can be set up 

this way. 
E.g., [Levin-Viola-Freund03] identifying objects in 

images.  Two different kinds of preprocessing. 
 
 
 
E.g., [Collins&Singer99] named-entity extraction. 

–  “I arrived in London yesterday” 
•  … 



Co-training 
•  Setting is each example x = hx1,x2i, where x1, x2 are 

two “views” of the data. 
•  Have separate algorithms running on each view. Use 

each to help train the other. 
•  Basic hope is that two views are consistent.  Using 

agreement as proxy for labeled data. 



Toy example: intervals 
As a simple example, suppose x1, x2 2 R.  Target function is 

some interval [a,b]. 

+ 
+ 

+ 
+ + 

a1 b1 

a2 

b2 



Results: webpages 
12 labeled examples, 1000 unlabeled 

(sample 
run) 



Results: images [Levin-Viola-Freund ‘03]:  
•  Visual detectors with different kinds of processing 

•  Images with 50 labeled cars.  
22,000 unlabeled images. 

•  Factor 2-3+ improvement. 

From [LVF03] 



Co-Training Theorems 
•  [BM98] if x1, x2 are independent given the 

label, and if have alg that is robust to noise, 
then can learn from an initial “weakly-useful” 
rule plus unlabeled data. 

Faculty home 
pages Faculty with 

advisees “My 
advisor” 



Co-Training Theorems 
•  [BM98] if x1, x2 are independent given the 

label, and if have alg that is robust to noise, 
then can learn from an initial “weakly-useful” 
rule plus unlabeled data. 

•  [BB05] in some cases (e.g., LTFs), you can use 
this to learn from a single labeled example! 

•  [BBY04] if algs are correct when they are 
confident, then suffices for distrib to have 
expansion. 

•  … 



Method 2:   
 

Semi-Supervised 
(Transductive) SVM 



S3VM [Joachims98] 

•  Suppose we believe target separator goes through 
low density regions of the space/large margin. 

•  Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U) 

+ 

+ 

_
 

_ 

Labeled data only 

+ 

+ 

_
 

_ 

+ 

+ 

_
 

_ 

           S^3VM 
SVM 



S3VM [Joachims98] 

•  Suppose we believe target separator goes through 
low density regions of the space/large margin. 

•  Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U) 

•  Unfortunately, optimization problem is now NP-
hard.  Algorithm instead does local optimization. 
–  Start with large margin over labeled data. Induces 

labels on U. 
–  Then try flipping labels in greedy fashion. 

+ 
+ 

_
 _ 

+ 
+ 

_
 _ 

+ 
+ 

_
 _ 



S3VM [Joachims98] 

•  Suppose we believe target separator goes through 
low density regions of the space/large margin. 

•  Aim for separator with large margin wrt labeled 
and unlabeled data. (L+U) 

•  Unfortunately, optimization problem is now NP-
hard.  Algorithm instead does local optimization. 
–  Or, branch-and-bound, other methods (Chapelle etal06) 

•  Quite successful on text data. 

+ 
+ 

_
 _ 

+ 
+ 

_
 _ 

+ 
+ 

_
 _ 



Method 4:   
 

Graph-based methods 



Graph-based methods 
•  Suppose we believe that very similar examples 

probably have the same label. 
•  If you have a lot of labeled data, this suggests a 

Nearest-Neighbor type of alg. 
•  If you have a lot of unlabeled data, perhaps can use 

them as “stepping stones” 
E.g., handwritten digits [Zhu07]: 



Graph-based methods 
•  Idea: construct a graph with edges between 

very similar examples. 
•  Unlabeled data can help “glue” the objects 

of the same class together. 
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Graph-based methods 
•  Idea: construct a graph with edges between 

very similar examples. 
•  Unlabeled data can help “glue” the objects 

of the same class together. 
•  Solve for: 

– Minimum cut [BC,BLRR] 
– Minimum “soft-cut” [ZGL] 
          ∑e=(u,v)(f(u)-f(v))2 
–  Spectral partitioning [J] 
–  … 

- 

- +
 + 



Graph-based methods 
•  Suppose just two labels: 0 & 1. 
•  Solve for labels 0 · f(x) · 1 for unlabeled 

examples x to minimize: 
–   ∑e=(u,v)|f(u)-f(v)|   [soln = minimum cut] 
–   ∑e=(u,v) (f(u)-f(v))2 [soln = electric potentials] 
–  … 

- 

- +
 + 



Learning from Positive and 
Unlabeled Examples 

PU learning 
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Learning from Positive & 
Unlabeled data 

•  Positive examples: One has a set of examples 
of a class P, and  

•  Unlabeled set: also has a set U of unlabeled (or 
mixed) examples with instances from P and also not 
from P (negative examples).  

•  Build a classifier: Build a classifier to classify 
the examples in U and/or future (test) data.  

•  Key feature of the problem: no labeled 
negative training data.  

•  We call this problem, PU-learning. 
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Applications of the problem 
•  With the growing volume of online texts available 

through the Web and digital libraries, one often 
wants to find those documents that are related to 
one's work or one's interest.  

•  For example, given a ICML proceedings,  
–  find all machine learning papers from AAAI, IJCAI, KDD  
–  No labeling of negative examples from each of these 

collections. 
•  Similarly, given one's bookmarks (positive 

documents), identify those documents that are of 
interest to him/her from Web sources.  
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Direct Marketing 
•  Company has database with details of its 

customer – positive examples, but no information 
on those who are not their customers, i.e., no 
negative examples. 

•  Want to find people who are similar to their 
customers for marketing 

•  Buy a database consisting of details of people, 
some of whom may be potential customers – 
unlabeled examples. 
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Are Unlabeled Examples 
Helpful? 

•  Function known to be 
either x1 < 0 or x2 > 0 

•  Which one is it? 
 

x1 < 0 

x2 > 0 

+ 

+ 

+ + + 
+ + + 

+ 

u u 
u 

u 
u 

u 

u 

u 
u 

u 
u 

“Not learnable” with only positive 
examples. However, addition of 
unlabeled examples makes it  
learnable. 
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Theoretical foundations  
•  (X, Y):  X - input vector, Y ∈ {1, -1} - class label.  
•  f : classification function  
•  We rewrite the probability of error 
    Pr[f(X) ≠Y] = Pr[f(X) = 1 and Y = -1] +                    (1) 
                        Pr[f(X) = -1 and Y = 1] 
We have Pr[f(X) = 1 and Y = -1]  
   = Pr[f(X) = 1] – Pr[f(X) = 1 and Y = 1]  
   = Pr[f(X) = 1] – (Pr[Y = 1] – Pr[f(X) = -1 and Y = 1]).  
Plug this into (1), we obtain 
    Pr[f(X) ≠ Y] = Pr[f(X) = 1] – Pr[Y = 1]                      (2) 

                        + 2Pr[f(X) = -1|Y = 1]Pr[Y = 1]  
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Theoretical foundations (cont) 
•  Pr[f(X) ≠ Y] = Pr[f(X) = 1] – Pr[Y = 1]                      (2) 
                        + 2Pr[f(X) = -1|Y = 1] Pr[Y = 1]  
•  Note that Pr[Y = 1] is constant.  
•  If we can hold Pr[f(X) = -1|Y = 1] small, then learning is 

approximately the same as minimizing Pr[f(X) = 1]. 
•  Holding  Pr[f(X) = -1|Y = 1]  small while minimizing Pr[f(X) = 1] 

is approximately the same as  
–  minimizing Pru[f(X) = 1]  
–  while holding PrP[f(X) = 1] ≥ r (where r is recall Pr[f(X)=1| 

Y=1]) which is the same as (Prp[f(X) = -1] ≤ 1 – r) 
 if the set of positive examples P and the set of unlabeled 
examples U are large enough.  

•  Theorem 1 and Theorem 2 in [Liu et al 2002] state these 
formally in the noiseless case and in the noisy case. 



CS583, Bing Liu, UIC 52 

Put it simply 

•  A constrained optimization problem. 
•  A reasonably good generalization 

(learning) result can be achieved  
–  If the algorithm tries to minimize the 

number of unlabeled examples labeled as 
positive  

–  subject to the constraint that the fraction 
of errors on the positive examples is no 
more than 1-r.  
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An illustration 
•  Assume a linear classifier. Line 3 is the best 

solution.  
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Existing 2-step strategy 
•  Step 1: Identifying a set of reliable negative 

documents from the unlabeled set.  
–  S-EM [Liu et al, 2002] uses a Spy technique,  
–  PEBL [Yu et al, 2002] uses a 1-DNF technique 
–  Roc-SVM [Li & Liu, 2003] uses the Rocchio algorithm.  
–  …  

•  Step 2: Building a sequence of classifiers by 
iteratively applying a classification algorithm and 
then selecting a good classifier. 
–  S-EM uses the Expectation Maximization (EM) algorithm, 

with an error based classifier selection mechanism  
–  PEBL uses SVM, and gives the classifier at convergence. 

I.e., no classifier selection.  
–  Roc-SVM uses SVM with a heuristic method for selecting 

the final classifier.  
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Step 1                  Step 2 

positive negative 

Reliable 
Negative 
(RN) 

Q  
=U - RN 

U 

P 

positive 

Using P, RN and Q 
to build the final 
classifier iteratively  

or 
Using only P and RN 
to build a classifier 
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Step 1: The Spy technique 
•  Sample a certain % of positive examples and put 

them into unlabeled set to act as “spies”. 
•  Run a classification algorithm assuming all 

unlabeled examples are negative,  
–  we will know the behavior of those actual positive 

examples in the unlabeled set through the “spies”. 
•  We can then extract reliable negative examples 

from the unlabeled set more accurately.  



CS583, Bing Liu, UIC 57 

Step 1: Other methods 
•  1-DNF method:  

–  Find the set of words W that occur in the 
positive documents more frequently than in 
the unlabeled set. 

–  Extract those documents from unlabeled 
set that do not contain any word in W. 
These documents form the reliable negative 
documents.  

•  Rocchio method from information 
retrieval. 

•  Naïve Bayesian method. 
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Step 2: Running EM or SVM 
iteratively 

(1) Running a classification algorithm iteratively 
–  Run EM using P, RN and Q until it converges, or  
–  Run SVM iteratively using P, RN and Q until this no 

document from Q can be classified as negative. RN 
and Q are updated in each iteration, or 

–  … 
(2) Classifier selection.  
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Do they follow the theory? 
•  Yes, heuristic methods because 

–  Step 1 tries to find some initial reliable 
negative examples from the unlabeled set. 

–  Step 2 tried to identify more and more 
negative examples iteratively. 

•  The two steps together form an 
iterative strategy of increasing the 
number of unlabeled examples that are 
classified as negative while maintaining 
the positive examples correctly 
classified.   
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Can SVM be applied 
directly? 

•  Can we use SVM to directly deal with the 
problem of learning with positive and 
unlabeled examples, without using two 
steps? 

•  Yes, with a little re-formulation.  
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Support Vector Machines 
•  Support vector machines (SVM) are linear 

functions of the form f(x) = wTx + b, where w is 
the weight vector and x is the input vector.  

•  Let the set of training examples be {(x1, y1), (x2, 
y2), …, (xn, yn)}, where xi is an input vector and yi is 
its class label, yi ∈ {1, -1}.  

•  To find the linear function: 
  Minimize:  

  Subject to:  
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Soft margin SVM 
•  To deal with cases where there may be no 

separating hyperplane due to noisy labels of both 
positive and negative training examples, the soft 
margin SVM is proposed: 

 Minimize:  
 

 Subject to:  
  

 where C ≥ 0 is a parameter that controls the 
amount of training errors allowed.  



CS583, Bing Liu, UIC 63 

Biased SVM (noiseless case)  
•  Assume that the first k-1 examples are positive 

examples (labeled 1), while the rest are unlabeled 
examples, which we label negative (-1).  

  Minimize: 

  Subject to: 

            ξi ≥ 0, i = k, k+1…, n  
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Biased SVM (noisy case) 
•  If we also allow positive set to have some noisy 

negative examples, then we have: 

  Minimize: 

  Subject to: 

                ξi ≥ 0, i = 1, 2, …, n. 

•  This turns out to be the same as the asymmetric 
cost SVM for dealing with unbalanced data. Of 
course, we have a different motivation.   
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Estimating performance 

•  We need to estimate the performance in order to 
select the parameters.  

•  Since learning from positive and negative examples 
often arise in retrieval situations, we use F score 
as the classification performance measure F = 
2pr / (p+r) (p: precision, r: recall). 

•  To get a high F score, both precision and recall 
have to be high.  

•  However, without labeled negative examples, we do 
not know how to estimate the F score.   
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A performance criterion  

•  Performance criteria pr/Pr[Y=1]: It can be 
estimated directly from the validation set as r2/
Pr[f(X) = 1]  
–  Recall r = Pr[f(X)=1| Y=1] 
–  Precision p = Pr[Y=1| f(X)=1] 

To see this 
    Pr[f(X)=1|Y=1] Pr[Y=1] = Pr[Y=1|f(X)=1] Pr[f(X)=1]  

                                                        //both side 
times r 

•  Behavior similar to the F-score (= 2pr / (p+r)) 
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A performance criterion (cont …) 

•  r2/Pr[f(X) = 1] 
•  r can be estimated from positive 

examples in the validation set. 
•  Pr[f(X) = 1] can be obtained using the 

full validation set.  
•  This criterion actually reflects the 

theory very well.  
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Empirical Evaluation  
•  Two-step strategy: We implemented a benchmark system, called 

LPU, which is available at http://www.cs.uic.edu/~liub/LPU/LPU-
download.html 
–  Step 1:  

•  Spy  
•  1-DNF  
•  Rocchio  
•  Naïve Bayesian (NB) 

–  Step 2:  
•  EM with classifier selection 
•  SVM: Run SVM once.  
•  SVM-I: Run SVM iteratively and give converged classifier. 
•  SVM-IS: Run SVM iteratively with classifier selection 

•  Biased-SVM (we used SVMlight package) 
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Results of Biased SVM 
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Summary 
•  Gave an overview of the theory on learning with 

positive and unlabeled examples.  
•  Described the existing two-step strategy for 

learning.  
•  Presented an more principled approach to solve the 

problem based on a biased SVM formulation. 
•  Presented a performance measure pr/P(Y=1) that 

can be estimated from data.  
•  Experimental results using text classification show 

the superior classification power of Biased-SVM. 
•  Some more experimental work are being performed 

to compare Biased-SVM with weighted logistic 
regression method [Lee & Liu 2003]. 



Is there some underlying 
principle here? 

 
What should be true about 

the world for unlabeled data 
to help? 



Detour back to standard 
supervised learning 

 
Then new model 

[Joint work with Nina Balcan] 



Standard formulation (PAC) for 
supervised learning 

•  We are given training set S = {(x,f(x))}. 
–  Assume x’s are random sample from underlying 

distribution D over instance space. 
–  Labeled by target function f. 

•  Alg does optimization over S to produce 
some hypothesis (prediction rule) h. 

•  Goal is for h to do well on new examples also 
from D. 

I.e., PrD[h(x)≠f(x)] < ε. 



Standard formulation (PAC) for 
supervised learning 

•  Question: why should doing well on S have 
anything to do with doing well on D? 

•  Say our algorithm is choosing rules from 
some class C. 
–  E.g., say data is represented by n boolean 

features, and we are looking for a good decision 
tree of size O(n). x3 

x5 x2 

+ + - - 

How big does S have to be 
to hope performance 
carries over? 



Confidence/sample-complexity 
•  Consider a rule h with err(h)>ε, that we’re 

worried might fool us. 
•  Chance that h survives m examples is at most 

(1-ε)m. 
 

  So, Pr[some rule h with err(h)>ε is consistent] 
     < |C|(1-ε)m. 

 

•  This is <0.01 for m > (1/ε)[ln(|C|) + ln(100)]	



View as just # bits 
to write h down! 



Occam’s razor 
William of Occam (~1320 AD): 
 

 “entities should not be multiplied 
unnecessarily” (in Latin) 

 

Which we interpret as: “in general, prefer 
simpler explanations”. 

 
Why?  Is this a good policy?  What if we 

have different notions of what’s simpler? 



Occam’s razor (contd) 
A computer-science-ish way of looking at it: 
 
•  Say “simple” = “short description”. 
•  At most 2s explanations can be < s bits long. 
•  So, if the number of examples satisfies: 

   m > (1/ε)[s ln(2) + ln(100)] 
    
   Then it’s unlikely a bad simple (< s bits) 

explanation will fool you just by chance. 

Think of as 
10x #bits to 

write down h.  



Intrinsically, using notion of 
simplicity that is a function of 

unlabeled data. 

Semi-supervised model 
High-level idea: 

(Formally, of how proposed rule relates 
to underlying distribution; use 

unlabeled data to estimate) 



Intrinsically, using notion of 
simplicity that is a function of 

unlabeled data. 

Semi-supervised model 
High-level idea: 

E.g., “large margin 
separator” 

“small cut” “self-consistent 
rules” 

+ 
+ 

_
 _ 

+ h1(x1)=h2(x2) 



Formally 
•  Convert belief about world into an unlabeled 

loss function lunl(h,x)2[0,1]. 
•  Defines unlabeled error rate 

– Errunl(h) = Ex»D[lunl(h,x)] 
(“incompatibility 

score”) 

Co-training: fraction of data pts hx1,x2i 
where h1(x1) ≠ h2(x2)  



Formally 
•  Convert belief about world into an unlabeled 

loss function lunl(h,x)2[0,1]. 
•  Defines unlabeled error rate 

– Errunl(h) = Ex»D[lunl(h,x)] 
(“incompatibility 

score”) 

S3VM: fraction of data pts x near to 
separator h.  

                               lunl(h,x) 
0 

•  Using unlabeled data to estimate this score. 



 Can use to prove sample bounds 
Simple example theorem:  (believe target is fully compatible) 

Define C(ε) = {h 2 C : errunl(h) · ε}. 

Bound the # of labeled examples as a measure of 
the helpfulness of D wrt our incompatibility score.	


–  a helpful distribution is one in which C(ε) is small 



 Can use to prove sample bounds 
Simple example theorem:  
Define C(ε) = {h 2 C : errunl(h) · ε}. 
 

Extend to case where target not fully compatible.  
Then care about {h2C : errunl(h) · ε + errunl(f*)}. 



 When does unlabeled data help? 

•  Target agrees with beliefs (low unlabeled error 
rate / incompatibility score). 

•  Space of rules nearly as compatible as target is 
“small” (in size or  VC-dimension or ε-cover 
size,…) 

•  And, have algorithm that can optimize. 
 
Extend to case where target not fully compatible.  

Then care about {h2C : errunl(h) · ε + errunl(f*)}. 



Interesting implication of analysis: 
•  Best bounds for algorithms that first use 

unlabeled data to generate set of candidates. 
(small ε-cover of compatible rules) 

•  Then use labeled data to select among these. 

 When does unlabeled data help? 

Unfortunately, often hard to do this 
algorithmically.  Interesting challenge. 
(can do for linear separators if have indep given 

label ) learn from single labeled example) 



 Conclusions 

•  Semi-supervised learning is an area of 
increasing importance in Machine Learning. 

•  Automatic methods of collecting data make it 
more important than ever to develop methods 
to make use of unlabeled data. 

•  Several promising algorithms (only discussed a 
few). Also new theoretical framework to help 
guide further development. 


