Análise de Algoritmos

Ronaldo Cristiano Prati

Bloco A, sala 513-2

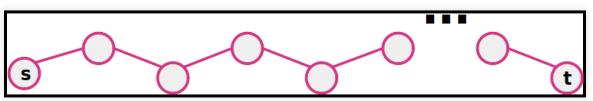
ronaldo.prati@ufabc.edu.br

- Já vimos que a busca em largura é capaz de encontrar a menor distância de um certo nó para qualquer outro nó para grafos não ponderados
 - Como cara arestas não tem pesos (ou equivalentemente tem o mesmo peso), a distância entre vértices é dada pelo número de areastas
- E se areastes tiverem peso?
 - O tamanho de um caminho é dado pela soma dos pesos das arestas daquele caminho

Caminho mais Curto de única fonte

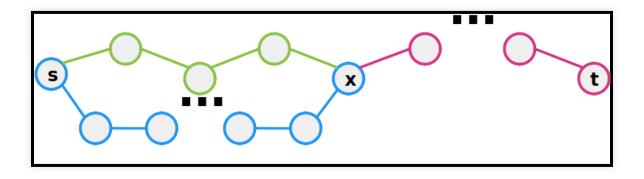
- **Problema** Dados um grafo G=(V,E), uma função w de peso nas arestas e um vértice $s\in V(G)$, calcular a distância mínima $dist^w_G(s,v)$ para todo $v\in V(G)$.
- Em outras palavras, queremos encontrar a distância mínima a partir de uma fonte s qualquer do grafo para todos os outros nós do grafo
 - Se o nó v não é alcançável a partir de $s, dist^w_G(s,v) = \infty$

- Intuição:
 - lacksquare Suponha que esse seja o caminho mais curto de s a t

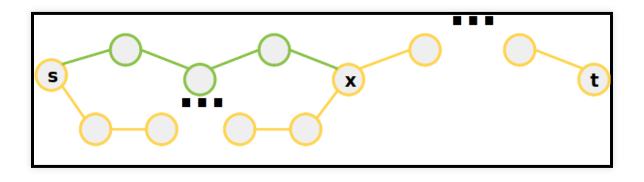


- Intuição:
 - Suponha que esse seja o caminho mais curto de s a t
 - lacktriangle E que nesse caminho exista um subcaminho de s e passando por x

- Intuição:
 - lacksquare Suponha que esse seja o caminho mais curto de s a t
 - lacktriangle E que nesse caminho exista um subcaminho de s e passando por x
 - lacktriangle Se existir um outro caminho de s a x ele tem que ser maior ou igual que o subcaminho do caminho ótimo



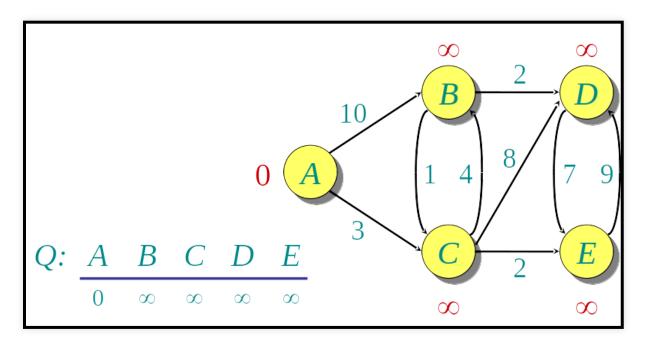
- Intuição:
 - lacksquare Suponha que esse seja o caminho mais curto de s a t
 - lacktriangle E que nesse caminho exista um subcaminho de s e passando por x
 - Se existir um outro caminho de s a x ele tem que ser maior ou igual que o subcaminho do caminho ótimo (senão ele seria o ótimo)

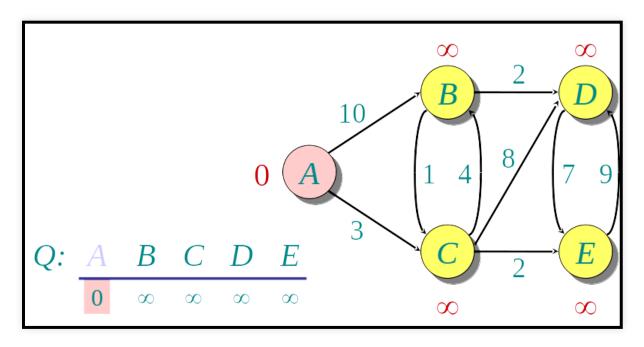


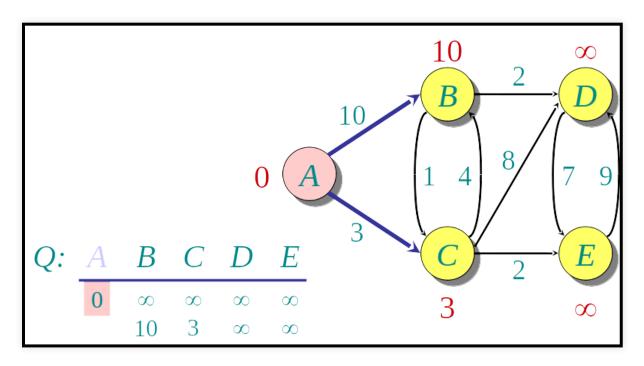
- O algoritmo de Dijkstra resolve o problema, e os pesos das areastas forem todos positivos
- A distância v.distance para os nós $v \in G$ é inicializada com ∞ e para a fonte é inicializada 0
- Algoritmo guloso: a cada etapa descobre a menor distância para um novo vértice u, e "relaxa" a distância para os demais
 - Seleciona o vértice u de menor distância
 - lacktriangle Relaxa a distância dos vizinhos v de u usando a fórmula:

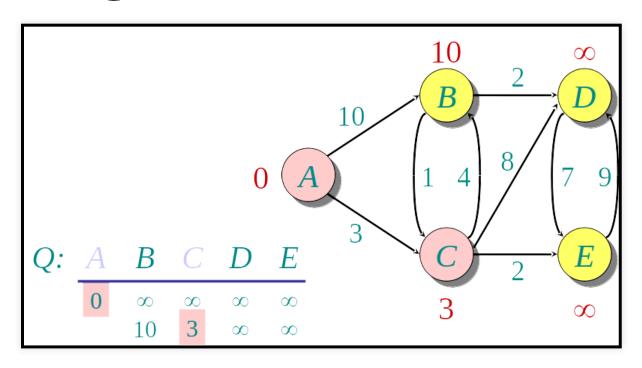
```
v.distancia = \min(v.distancia, u.dist \hat{a}ncia + w(uv))
```

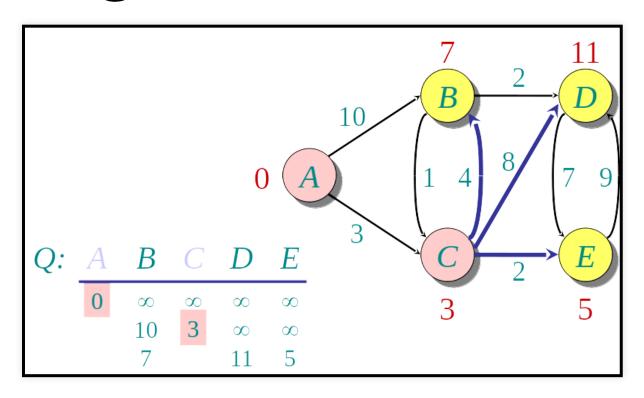
- Usamos um apontador para o predecessor de cada nó para armezar o menor caminho, além da menor distância
- Podemos usar uma Heap para encontrar o vértice de menor distância mais rapidamente.
- A Heap armazena os nós, de acordo com a distância conhecida até o momento.

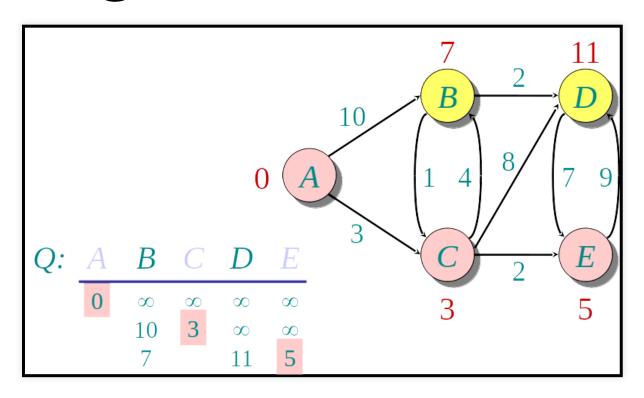


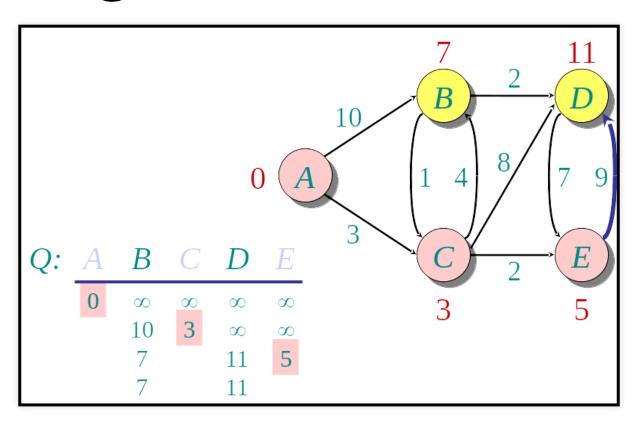


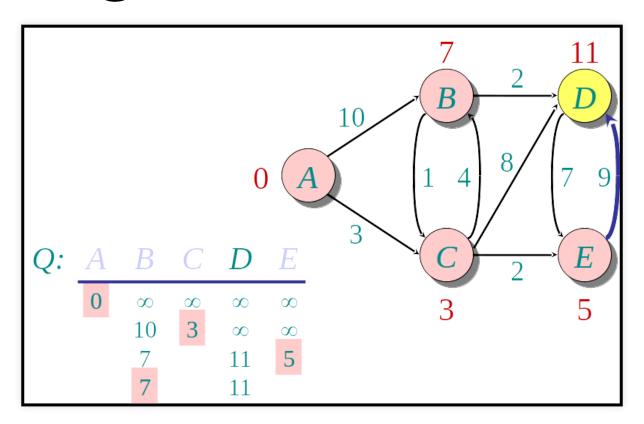


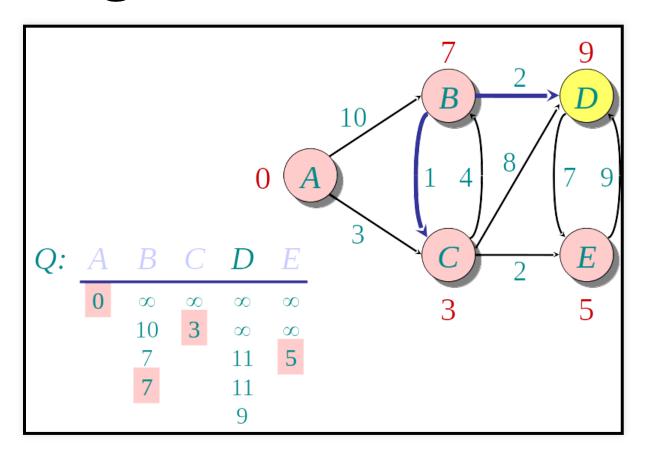


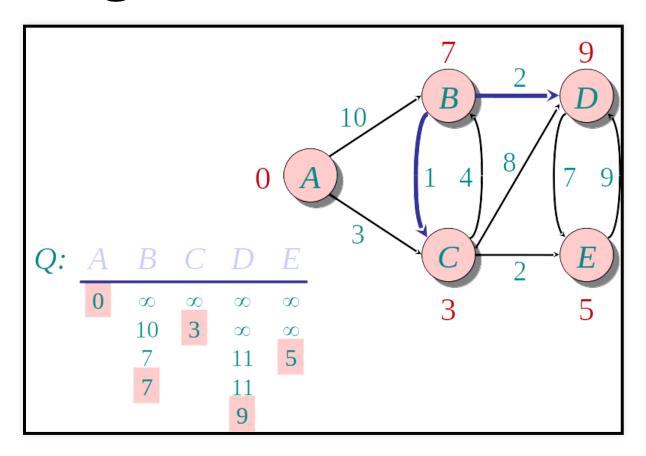




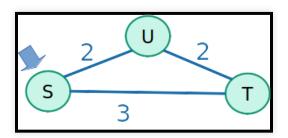








- É muito parecido com o algoritmo de Prim
 - Prim: Encontra uma árvore geradora mínima conectando todos os nós do grafo
 - Dijkstra: Encontra uma árvore de menor distância entre um certo nó i para todos os outros nós do grafo
- Complexidade de ambos é similar



- Usado na prática
 - O protocolo OSPF (Open Shortest Path First), um protocolo de rotamento para redes IP, usa dijkstra

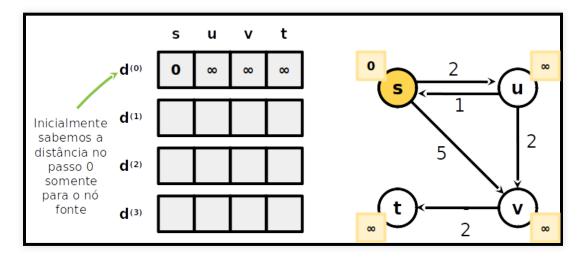
- No entanto, o algoritmo tem algumas limitações:
 - Os pesos não podem ser negativos
 - Se os pesos mudam, o algoritmo precisa ser executado novamente
 - No OSPF, um vértice faz broadcast de qualquer mudança para a rede, e então cada vértice executa Dijkstra novamente do zero.

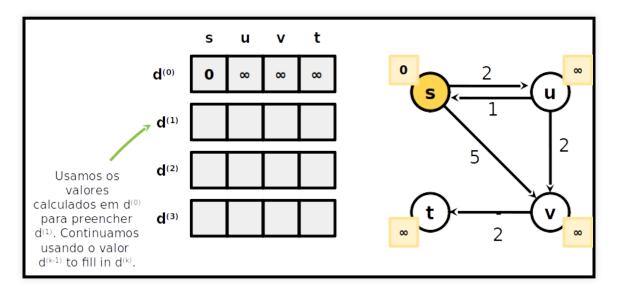
Por que funciona?

- Seja s o nó fonte
- Teorema: Após a execução do algoritmo de Dijkstra, v.distancia é o valor correto de $dist^w_G(s,v)$
- Observe que:
 - Para tovo $v \in V(G), v.distancia \geq dist^w_G(s,v).$ Ou seja, nunca subestimamos $dist^w_G(s,v)$
 - Sempre pegamos o mínimo entre o valor atual e um outro caminho com mais uma aresta
 - lacktriangle Quando um vértice é "finalizado", $v.distancia = dist_G^w(s,v)$
 - \circ Por contradição, podemos provar que caso contrário, teríamos chegado a v por um caminho de menor distância

- Mais lento que Dijkstra
- Entretanto, pode trabalhar com pesos negativos
- É útil como subrotina de outros algoritmos
- Também tem alguma flexibilidade com relação a mudança de pesos

- Ideia básica:
 - Ao invés de (gulosamente) atulizar apenas o vértice u de menor distância, atualizamos todos os vértices simultaneamente
- Para melhorar o desempenho, podemos usar programação dinâmica!



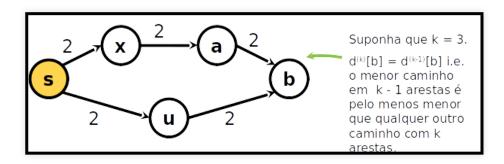


- Como podemos utilizar as distância $d^{(k-1)}$ calculadas na iteração k-1 para calcular a distância $d^{(k)}$ da iteração k?
 - No passo $k, d^{(k)}$ armazenada a menor distância em no máximo k arestas a partir da fonte
 - Temos dois casos (próximos slides):

$$d^{(k)}[b] = \min\{\underbrace{d^{(k-1)}[b]}_{ ext{caso } 1}, \underbrace{\min_a \{d^{(k-1)}[a] + w(a,b)\}}_{ ext{caso } 2}\}$$

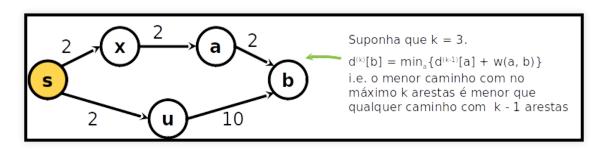
• Caso 1: o menor caminho de s até um nó b com no máximo k arestas tem k-1 arestas, nesse caso

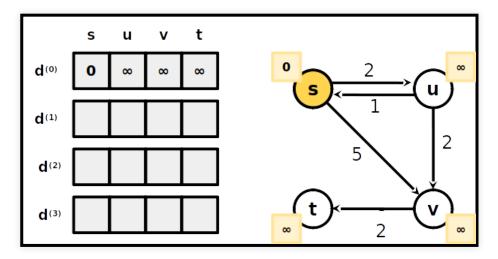
$$d^{(k)}[b]=d^{(k-1)}[b]$$

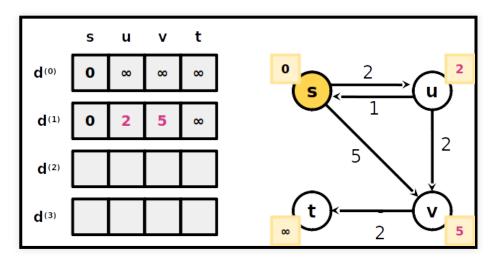


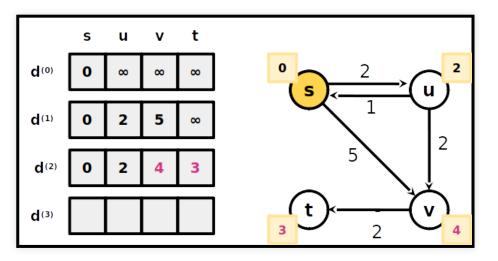
• Caso 2: o menor caminho de s até um nó b tem k arestas

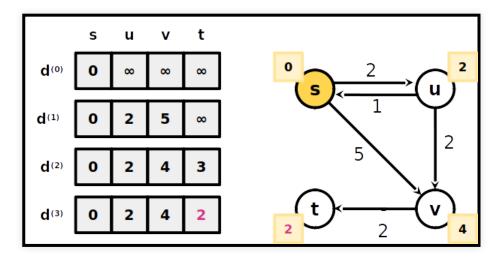
$$d^{(k)}[b] = \min_a \{d^{(k-1)}[a] + w(a,b)\}$$

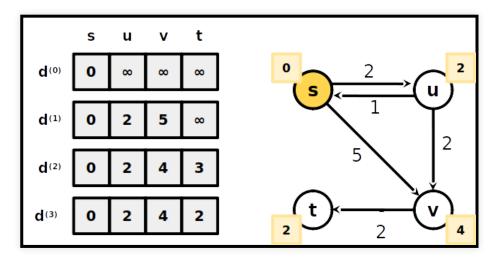




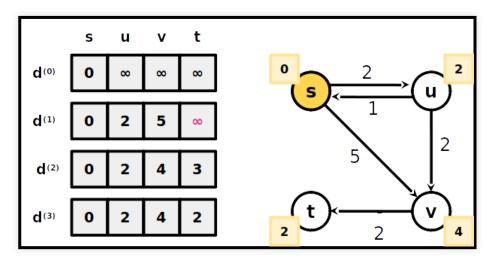




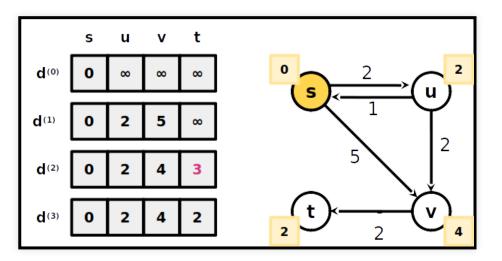




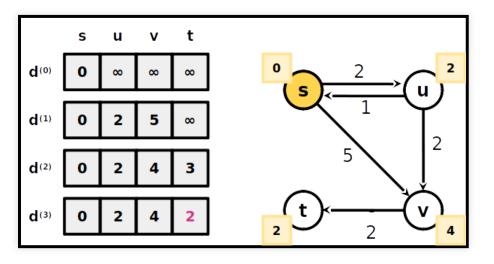
• A menor distância de s a t com no máximo 1 aresta é ∞ , portanto não existe um caminho até ele com 1 aresta



- A menor distância de s a t com no máximo 1 aresta é ∞ , portanto não existe um caminho até ele com 1 aresta
- A menor distância de s a 2 com no máximo 2 arestas é 3 (s-v-t)



- A menor distância de s a t com no máximo 1 aresta é ∞ , portanto não existe um caminho até ele com 1 aresta
- A menor distância de s a t com no máximo 2 arestas é 3 (s-v-t)
- A menor distância de s a t com no máximo 3 arestas é 3 (s-u-v-t)

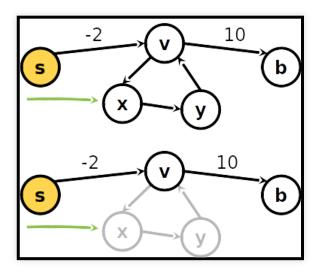


Por que funciona?

- Ao final da execução, temo $d^{(|V|-1)}[b]$, que é o custo de s a $v \in V(G)$ contendo até |V|-1 arestas.
- ullet O algortimo estará correto se $d^{(|V|-1)}[b]=dist^w_G(s,v)$
- Afirmação: Desde que não haja um ciclo negativo, $d^{(|V|-1)}[b] = dist^w_G(s,v).$

Por que funciona?

 Cao o ciclo seja positivo (ou seja, a soma dos pesos das arestas do ciclo vor maior que zero), percorrer o ciclo aumenta o caminho, então ele não está no caminho mínimo



Ciclos negativos

ullet Se houver algum ciclo negativo no grafo, haverá alguma aresta u,v tal que

$$v.distancia > u.distancia + w(u,v)$$

• O que não pode ocorrer se o grafo não tiver um ciclo negativo

Complexidade

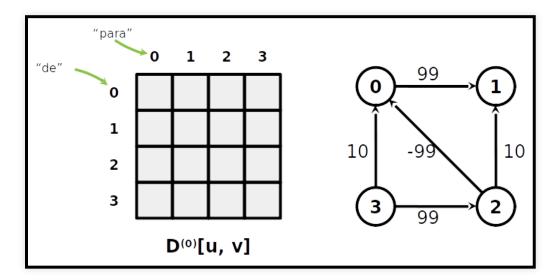
- Para cada vértice do grafo, o algoritmo itera (no pior caso) sobre todas as arestas
- Então a sua complexidade é O(|V||E|)

Caminho mais Curto entre todos os pares

Dados um grafo G=(V,E) e uma função w de peso nas arestas, calcular $dist^w_G(u,v)$ para todo par $u,v\in V(G)$.

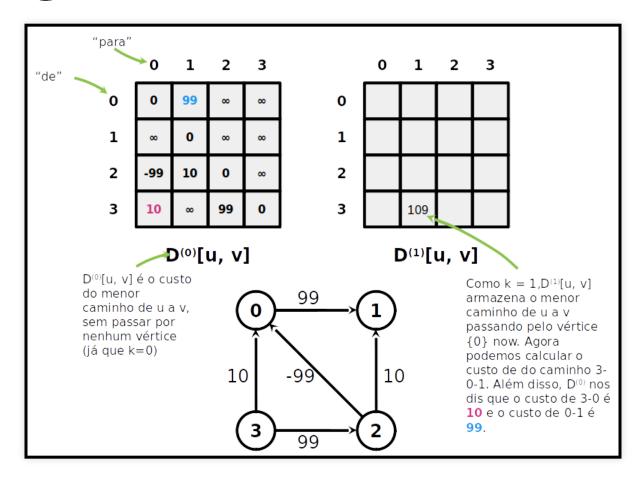
Caminho mais Curto entre todos os pares

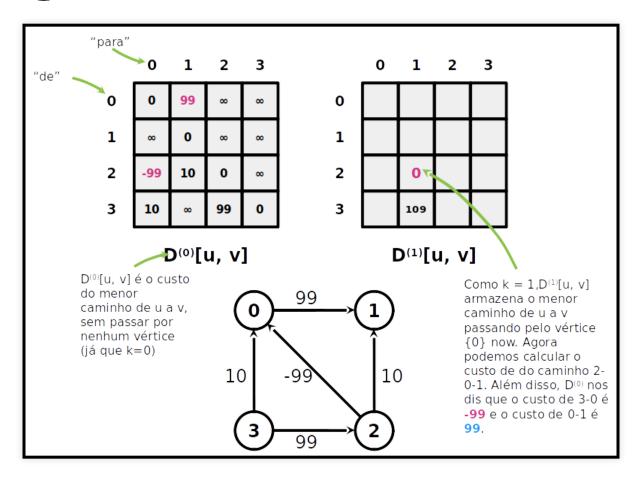
- Uma solução simples seria executar o algoritmo de Bellman-Ford usando cada um dos vértices como fonte
- Tempo de execução $O(|V|^2|E|)$
- Podemos fazer melhor?

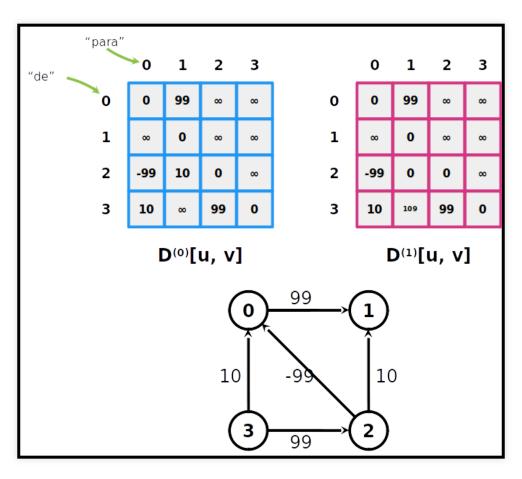


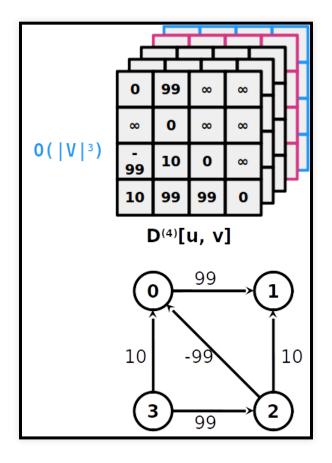
- Vamos manter uma matrix $D^{(k)}$ de tamanho |V| imes |V| para cada $k \in [0..|V|]$
 - $D^{(k)}[u,v]$ é o caminho de u a v, tal que os vértices internos no caminho estão no conjunto $\{0,...,k-1\}$

- Vamos manter uma matrix $D^{(k)}$ de tamanho |V| imes |V| para cada $k \in [0..|V|]$
 - $lacksquare D^{(k)}[u,v]$ é o caminho de u a v, tal que os vértices internos no caminho estão no conjunto $\{0,...,k-1\}$

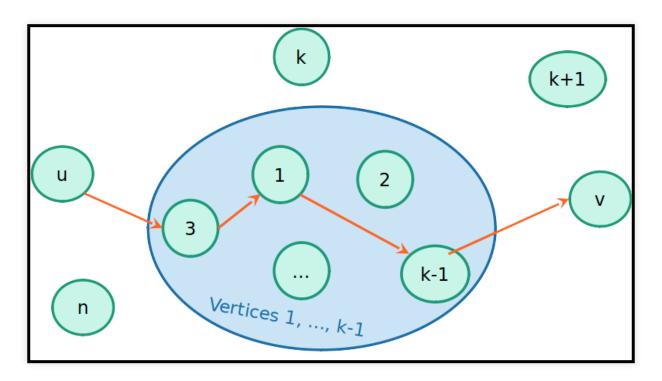




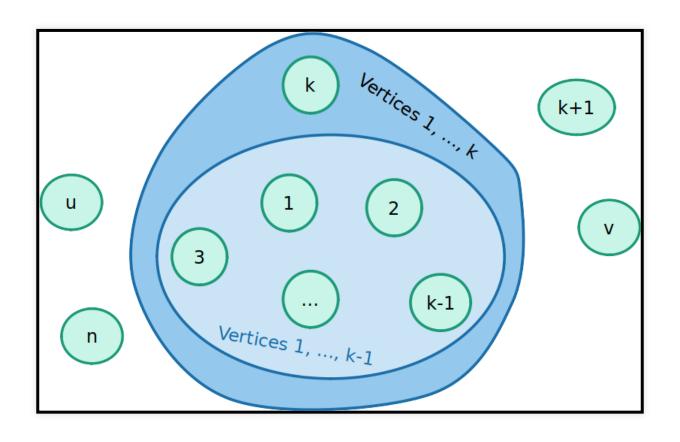




• A cada passo k, temos que $D^{(k)}[u,v]$ é o caminho de u a v, tal que os vértices internos no caminho estão no conjunto $\{0,...,k-1\}$



- Para atulizar a matriz no passo k + 1, temos dois casos:
 - 1. O caminho mais curto passa pelo vértice k
 - 2. O caminho mais curto não passa pelo vértice k



• Combinando os dois casos, temos:

$$D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$$

```
Algoritmo 73: Floyd-Warshall(G = (V, E), w)
ı Seja W[0..n][0..n][0..n] uma matriz
2 para i = 1 até n faça
      para j = 1 até n faça
3
         se i == j então
 4
             W[i][j][0] = 0
 5
            j. predecessor[i] = i
         senão se ij \in E(G) então
7
            W[i][j][0] = w(ij)
            j. predecessor [i] = i
         senão
10
             W[i][j][0] = \infty
11
            j. predecessor[i] = null
12
13 рага k = 1 até n faça
      para i = 1 até n faça
14
         para j = 1 até n faça
15
            se W[i][j][k-1] < W[i][k][k-1] + W[k][j][k-1] então
16
              W[i][j][k] = W[i][j][k-1]
17
            senão
18
                W[i][j][k] = W[i][k][k-1] + W[k][j][k-1]
19
               j. predecessor[i] = j. predecessor[k]
20
21 retorna W
```

• É fácil ver que a complexidade do algoritmo é $O(|V|^3)$

Resumo

Algoritmo	Dijkstra	Bellman-Ford	Floyd-Warshall
Problema	caminho mínimo de única fonte	caminho mínimo de única fonte	caminho mínimo para todos os pares
Complexidade	$O((\ V\ +\ E\)\log\ E\)$ (usando Heap)	$O(\ V\ \ E\)$	$O(\ V\ ^3)$
Vantagens		Funciona com arestas de pesos negativos, e pode detectar ciclos negativos	Funciona com arestas de pesos negativos, e pode detectar ciclos negativos
Desvantagens	Pode não funciona com arestas de pesos negativos		
Tipo	Guloso	Programação Dinâmica	Programação Dinâmica