APRENDIZADO DE MÁQUINA

APRENDIZADO NÃO-SUPERVISIONADO (AGRUPAMENTO)

PROF. RONALDO CRISTIANO PRATI

ronaldo.prati@ufabc.edu.br

Bloco A, sala 513-2

TIPOS DE APRENDIZADO

- Supervisionado os exemplos tem um atributo de interesse pré-determinado
- Não supervisionado não temos um atributo de interesse pré-determinado

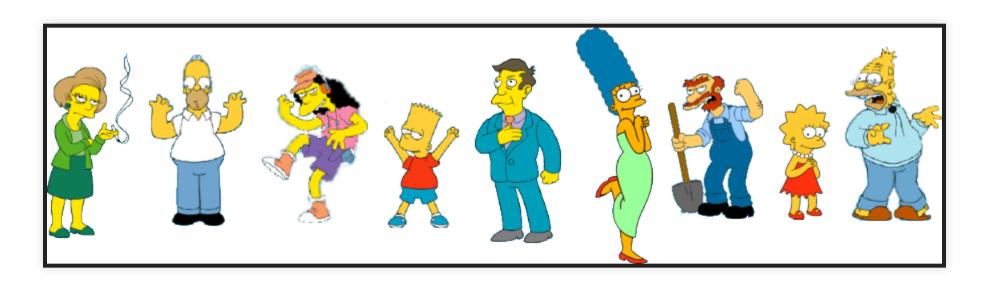
APRENDIZADO NÃO SUPERVISIONADO

- Agrupamento identificar alguma estrutura nos dados
- Redução de dimensionalidade usar características estruturais para simplificar os dados

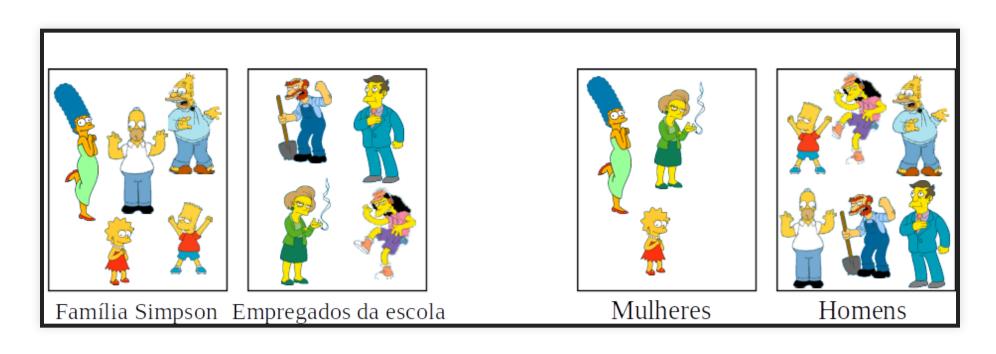
AGRUPAMENTO

- Organizar dados em grupos de forma que exista
 - uma alta similaridade intra-classe
 - uma baixa similaridade inter-classes
- Mais informalmente, encontrar grupos que ocorrem naturalmente entre objetos.

QUAL É O AGRUPAMENTO NATURAL DESSES OBJETOS?

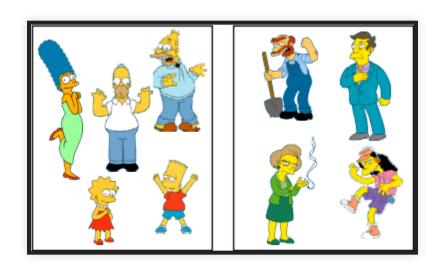


AGRUPAMENTO É SUBJETIVO



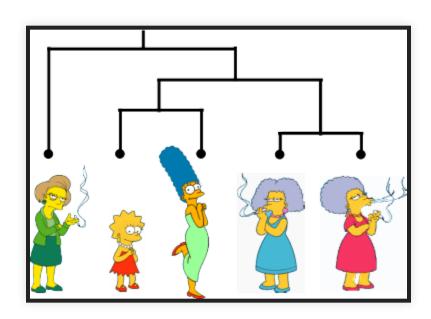
APRUPAMENTO PARTICIONAL

 Algoritmos Particionais: Construir diversas partições de acordo com algum critério



APRUPAMENTO HIERÁRQUICO

 Algoritmos Hierárquicos: Criar uma decomposição hierárquica de um conjunto de objetos utilizando algum critério

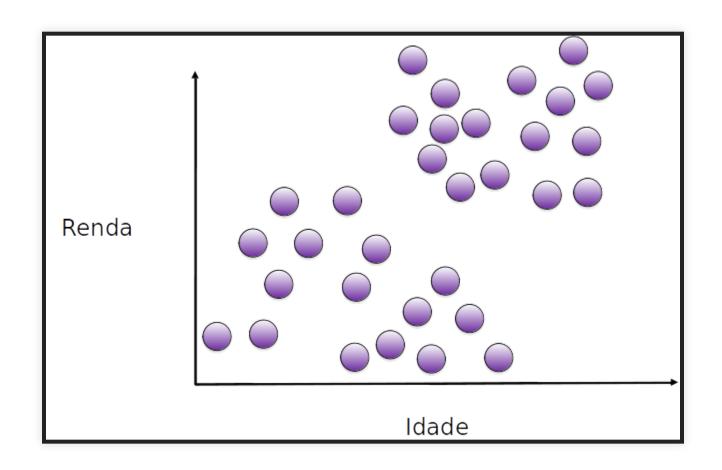


K-MÉDIAS

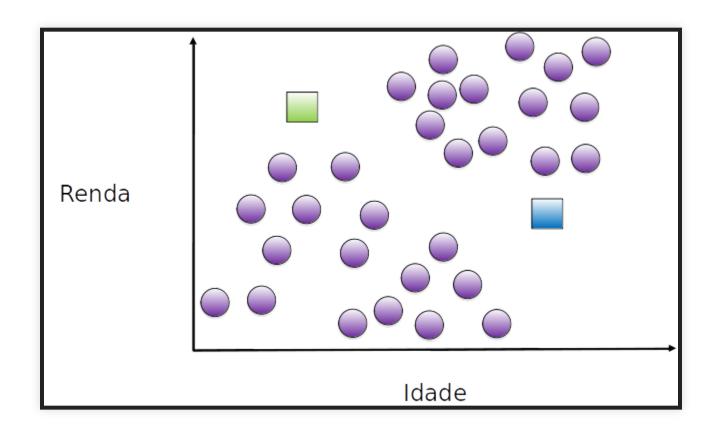
- Algoritmo particional: cada ponto é associado a um único grupo
- Precisamos decidir antecipadamente o número k de grupos

K-MÉDIAS - ALGORITMO

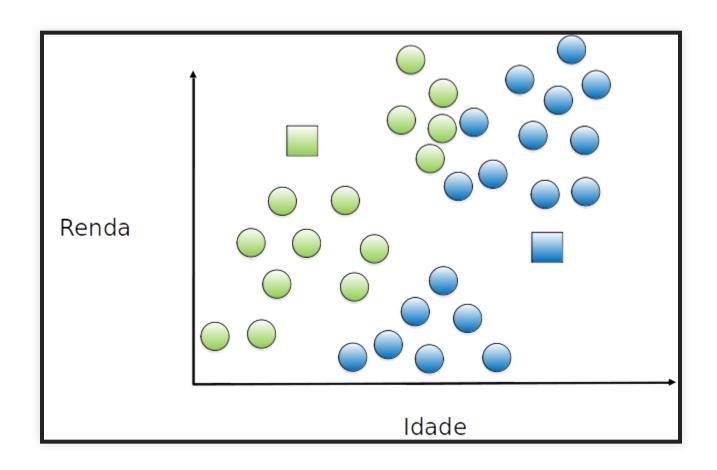
- 1. Decidir um valor para k.
- 2. Inicializar os centros dos k grupos (aleatoriamente, se necessário).
- 3. Decidir o grupo dos N objetos por meio da associação ao centro do grupo mais próximo.
- 4. Re-estimar os centros dos k grupos, assumindo que a associação com os grupos encontradas anteriormente está correta.
- 5. Se nenhum dos N objetos mudou de grupo na última iteração, pare. Caso contrário, volte para o passo 3.



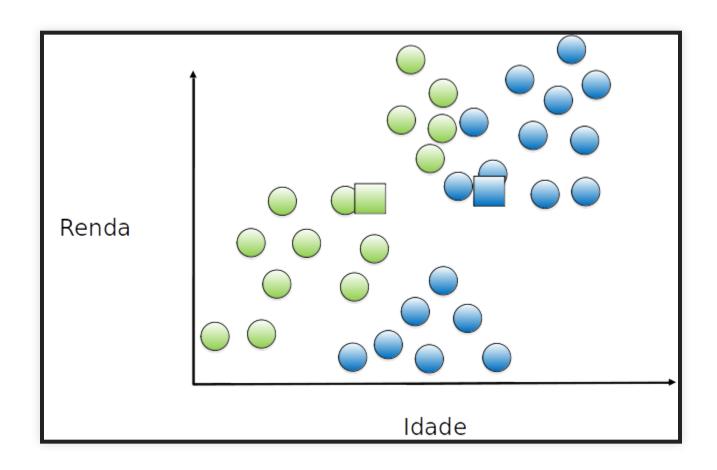
queremos encontrar 2 grupos



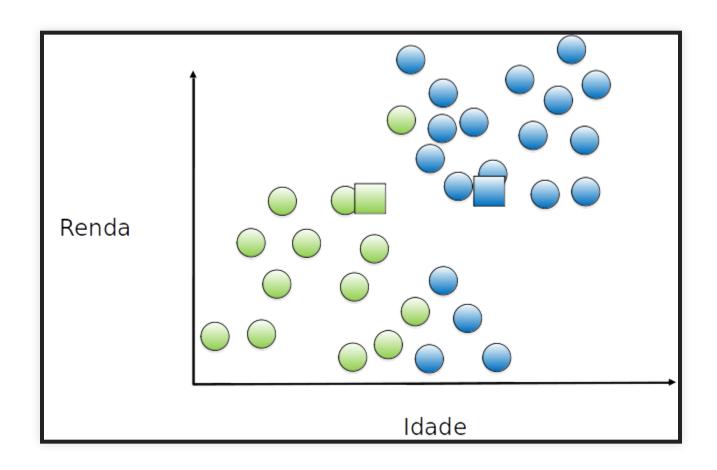
inicalizamos aleatoriamente o centróide dos dois grupos



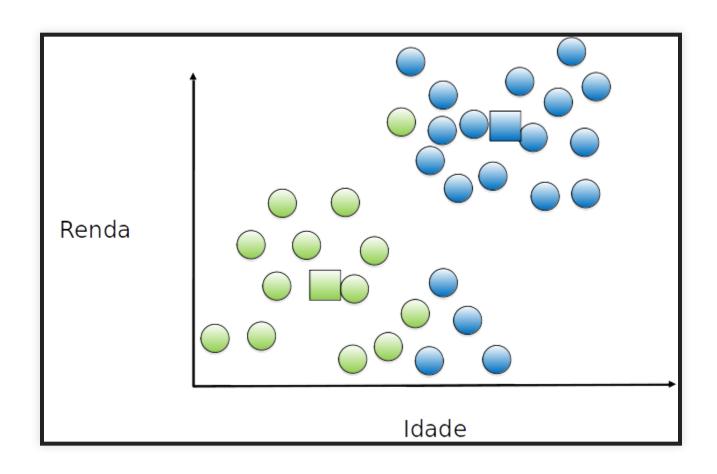
Cada exemplo é atribuído a um grupo, de acordo com o centróide mais próximo



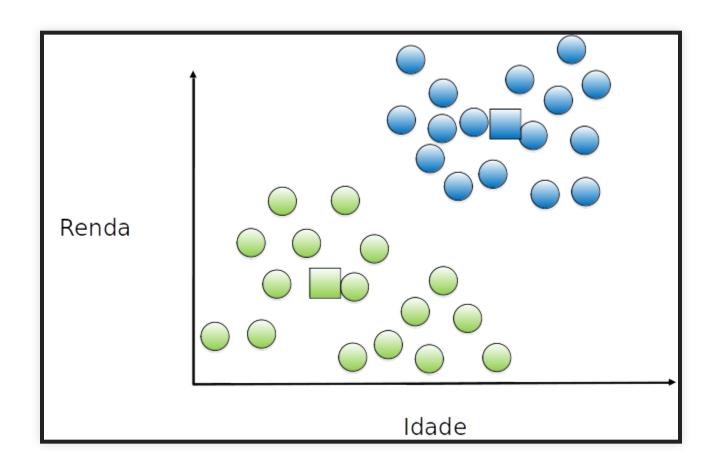
O centróide do grupo é movido para o centro de cada grupo



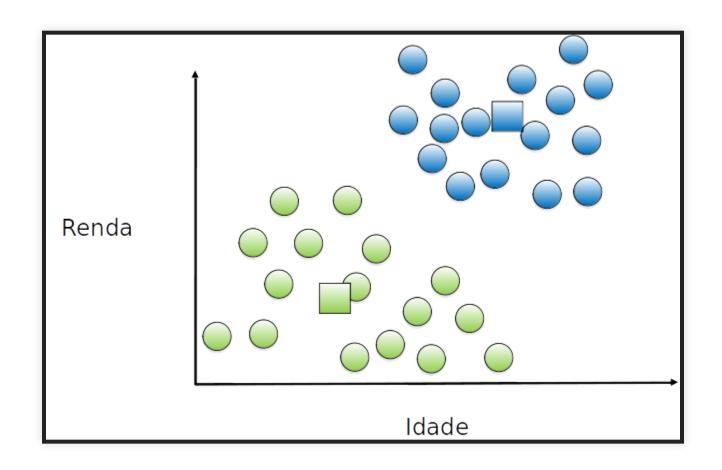
Cada exemplo é (re)atribuído a um grupo, de acordo com o (novo) centróide mais próximo



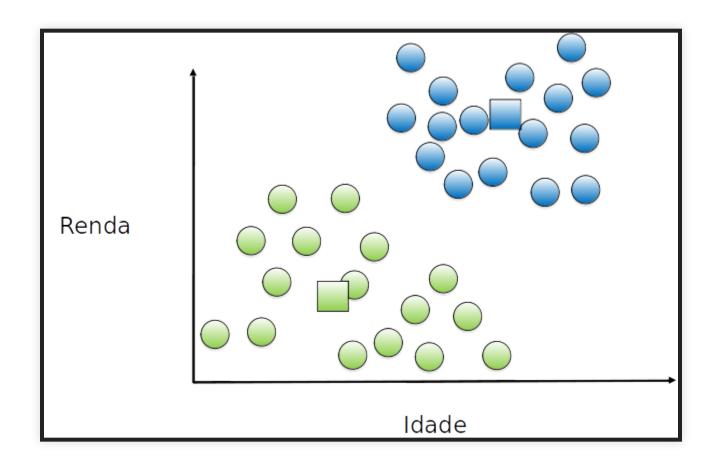
O centróide do grupo é movido (novamente) para o (novo) centro de cada grupo



Cada exemplo é (re)atribuído a um grupo, de acordo com o (novo) centróide mais próximo



O centróide do grupo é movido (novamente) para o (novo) centro de cada grupo.

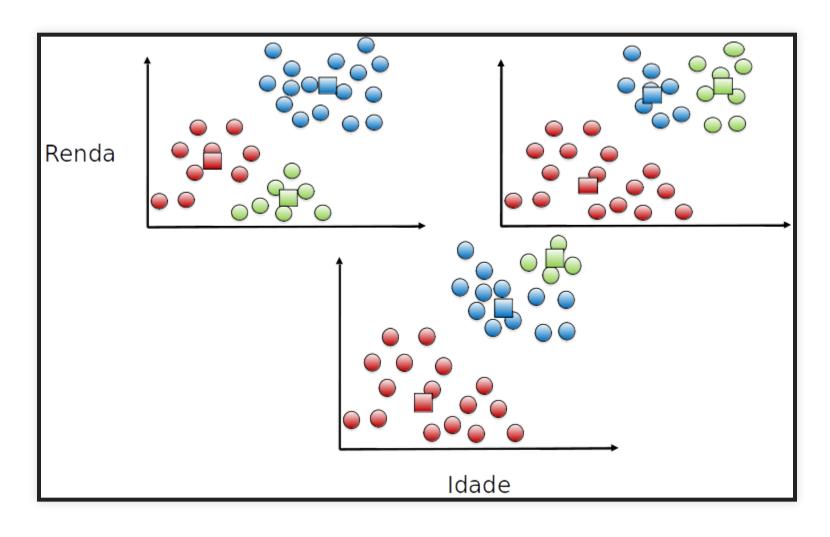


Cada exemplo é (re)atribuído a um grupo, de acordo com o (novo) centróide mais próximo. Como não houve alteração, convergiu.

K-MÉDIAS

- ullet O k-médias é dependente do número de cluster k
- O k-médias é sensível à inicialização dos clusters

K-MÉDIAS - DIFERENTES EXECUÇÕES



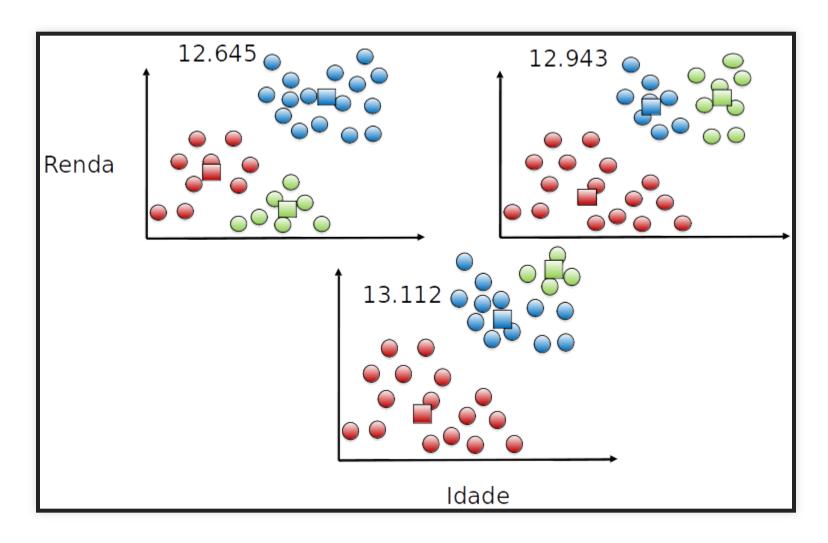
FUNÇÃO OBJETIVO

• Seja c^i o cluster i, μ_{c^i} o centróide do cluster i e x^i um exemplo associado ao cluster i. Podemos definir a função objetivo como:

$$J(c^1,\dots,c^k,\mu_{c^1},\dots,\mu_{c^k}) = rac{1}{m} \sum_i^m \|x^i - \mu_{c^i}\|^2$$

- Soma dos quadrados da distância de cada ponto ao seu respectivo cluster.
- Também chamado de inércia.

FUNÇÃO OBJETIVO



ESCOLHA DO VALOR DE K

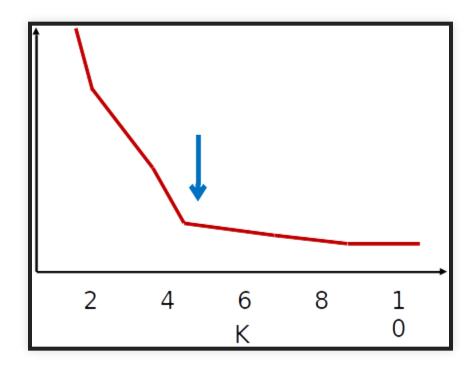
- Alguns problemas tem um valor de k bem definido
 - Agrupar tarefas similares em 4 núcleos de CPU (k=4)
 - Agrupar roupas em 5 diferentes tamanhos para cobrir a maioris das pessoas (k=5)
 - Agrupar comentários similares em 10 grupos (k=10)

ESCOLHA DO VALOR DE K

- Quando n\(\tilde{a}\)o temos conhecimento do dom\(\text{inio}\), escolher \(k\)
- Método do "cotovelo"
 - Executar k-médias para diferentes valores de
 - lacktriangle Fazer um gráfico de k por J
 - Escolher k em que J se "estabiliza"

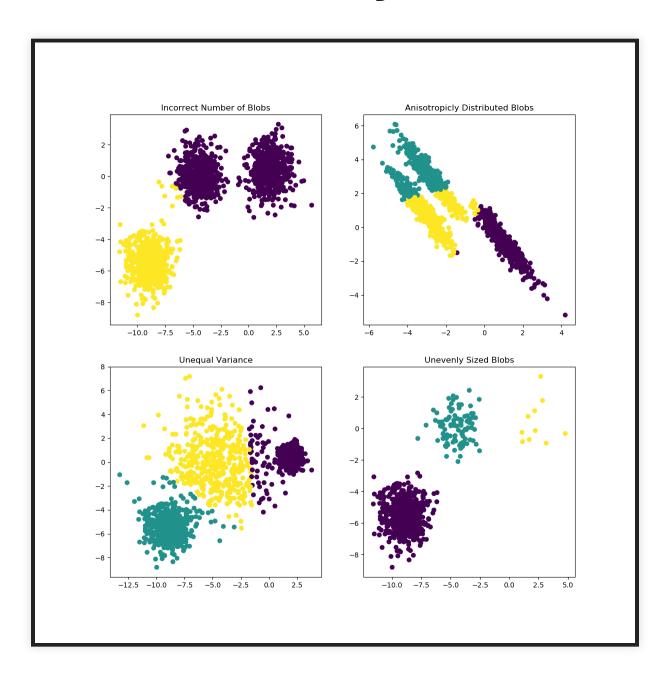
ESCOLHA DO VALOR DE K

• Chama-se método do "cotovelo" pois espera-se que o gráfico tenha o formato de um braço dobrado, e o k adequado seria o "cotovelo"



Nem sempre tem esse formato

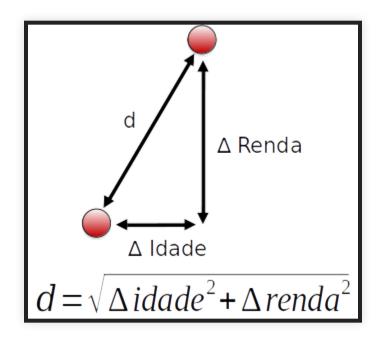
SUPOSIÇÕES



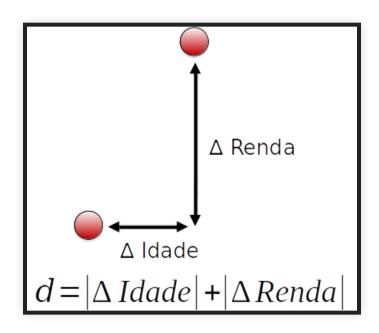
ESCOLHA DA MEDIDA DE DISTÂNCIA

- A escolha da medida de distância é extremamente importante para o sucesso do agrupamento
- Cada métrica tem vantagens/desvantagens e casos de uso mais apropriado
- Muitas vezes é preciso realizar uma avaliação empírica

DISTÂNCIA EUCLIDEANA

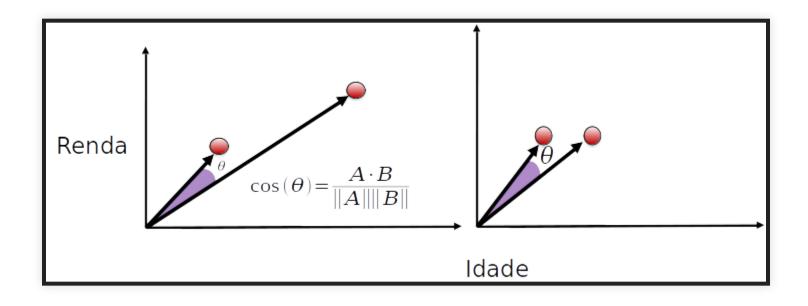


DISTÂNCIA MANHATTAN



Menos sensível a outliers

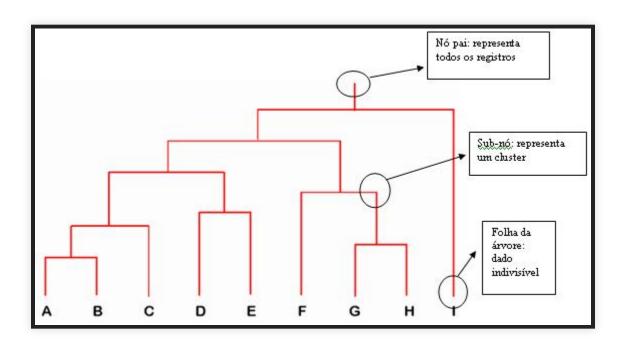
DISTÂNCIA DE COSENOS



• Menos sensível a escala e dimensionalidade

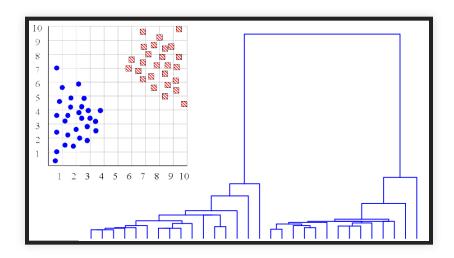
AGRUPAMENTO HIERÁRQUICO

- Representa a similaridade entre os dados por meio de um dendograma
- A similaridade entre dois objetos em um dendograma é representada pela altura do nó interno mais baixo que eles compartilham.



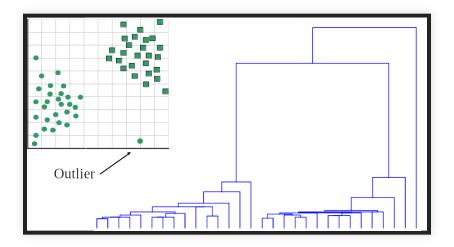
NÚMERO DE CLUSTERS

- O dendograma pode ajudar a determinar o número "correto" de agrupamentos. Nesse caso, a existência de duas árvores bem separadas é um forte indicativo de dois clusters.
- Infelizmente, raramente as coisas são assim tão claras.



OUTLIERS

- Um possível uso de dendogramas é a detecção de outliers
- Um ramo único e isolado sugere um dado que é muito diferente de todos os demais

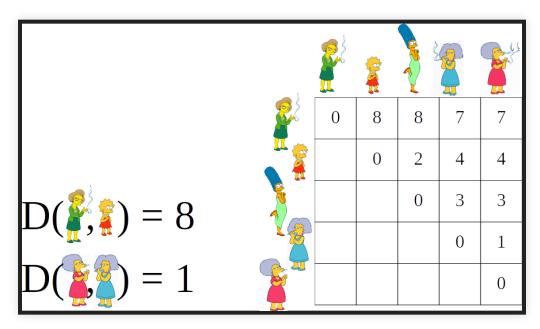


AGRUPAMENTO HIERÁRQUICO

- O número possível de dendogramas cresce exponencialmente com o tamanho do dataset
- Busca heurística:
 - aglomerativo: começa agrupando exemplos individualmente até construir um único cluster
 - divisivo: começa com um único cluster e vai dividindo recursivamente até chegar nos exemplos.

MATRIZ DE DISTÂNCIA

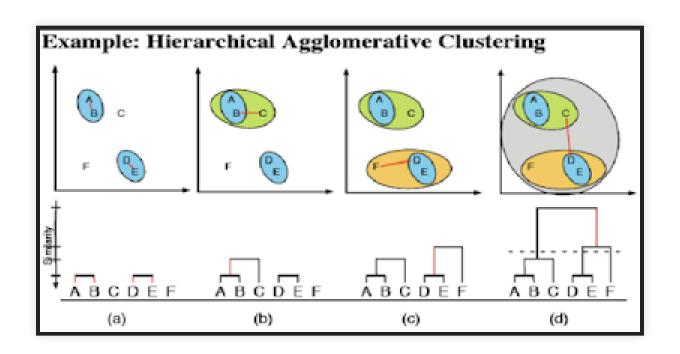
 contém as distâncias entre cada par de objetos da base de dados



ABORDAGEM AGLOMERATIVA

- 1. Cada exemplo representa um grupo
- 2. Encontra o melhor par para (menor distância) para criar um novo grupo
- 3. Recalcula a distânci do grupo criado para os demais
- 4. Volta ao passo 2. até que um único grupo seja formado

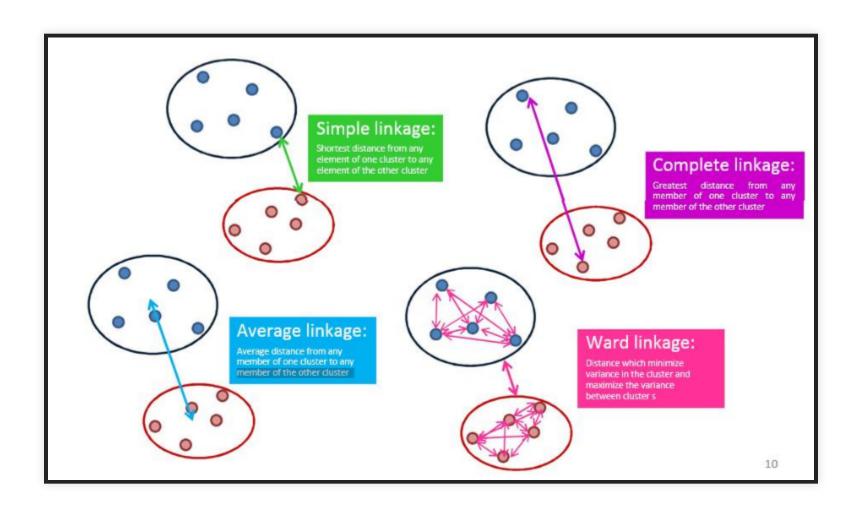
ABORDAGEM AGLOMERATIVA



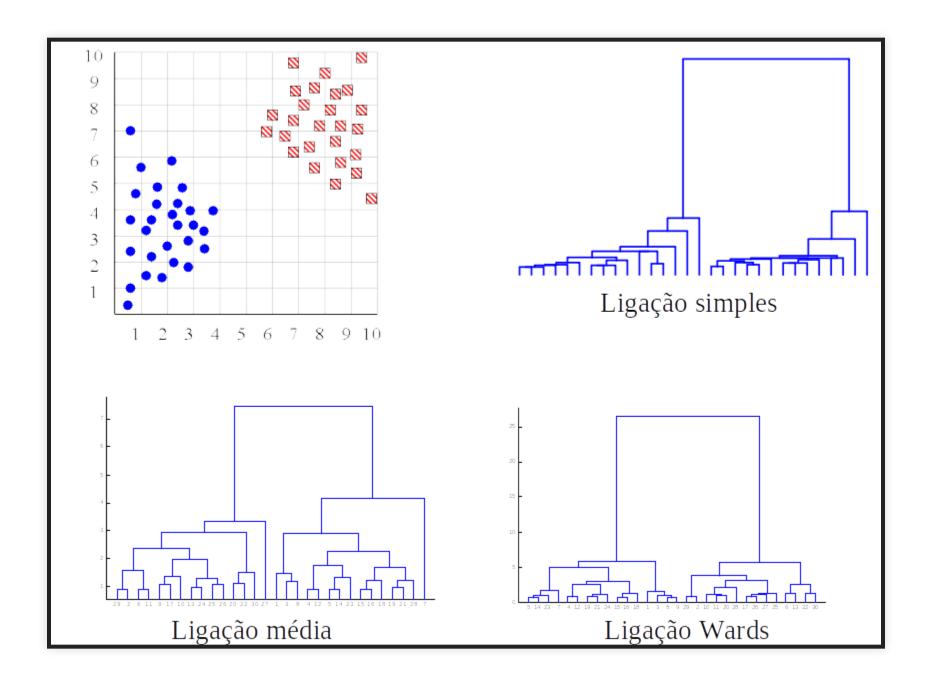
DISTÂNCIA ENTRE CLUSTERS

- Ligação simples (vizinho mais próximo): distância entre os dois objetos mais próximos (vizinhos mais próximos) nos diferentes clusters.
- Ligação completa (vizinho mais distante): maior distância entre dois objetos nos diferentes clusters ("vizinhos mais distantes").
- Ligação média de grupo: distância média entre todos os pares de objetos nos diferentes clusters.
- Ligação Wards: minimiza a variância entre os dois clusters aglomerados.

DISTÂNCIA ENTRE CLUSTERS



DISTÂNCIA ENTRE CLUSTERS



AGRUPAMENTO HIERÁRQUICO

- Não existe a necessidade de especificar o número de clusters a priori.
- A natureza hierárquica é facilmente mapeada pela intuição humana para alguns domínios.
- Eles não escalam bem: a complexidade de tempo é pelo menos $O(n^2)$, na qual n é o número de objetos.
- Como qualquer algoritmo de busca heurística, mínimos locais são um problema.
- A interpretação dos resultados é (muito) subjetiva.