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Abstract. In this paper, we investigate optimal power management in parallel pro-
cessing systems composed of one queue and several identical processing stations.
Power consumption is controlled by setting some of the stations into an inactive
state, where they consume less power but are unable to provide service. This way,
we are faced with the conflicting objective of minimizing power consumption while
maintaining a desired quality of service. A distinguishing feature here, regarding
most previous literature on this subject, is that we consider systems operating a pol-
icy that may turn the reserve machines on or off with setup times and under general
inter-arrival or service time distributions, subject to some conditions. When these
condition fail, we also provide a model with general inter-arrival times and expo-
nentially distributed service times. To some extent, a controlled switching diffusion
obtained in this paper via heavy traffic analysis and stochastic optimal control theory
are the technical underpinning of the paper. We also propose a numerical approach
to the solutions of the optimal control problems based on the Markov chain approxi-
mation method. Finally, we consider some numerical experiments that illustrate the
efficiency of the proposed approach.

Keywords. Heavy traffic Analysis, Switching Diffusion, Stochastic Optimal Control,
Parallel Processing Queuing Systems.

1. Introduction

Large data centers (or server farms) support major Internet-based organizations. It
is known that power consumption accounts for a large fraction of the cost incurred in
maintaining these data centers [14]. Nudged in part by this, the problem of managing
power consumption in large scale parallel computer systems composed of one queue of
pending jobs and a bank of identical processing stations has been the focus of various
research nowadays. Some authors have considered controlling power usage through
dynamic voltage (or frequency) scaling (DVFS) (e.g. [26]). In these cases, power
consumption is controlled by scaling CPU frequency either to conserve energy or to
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generate less heat. It has been argued, however, that energy savings improvements in
modern processors may limit the potential savings via DVFS [28, 36]. The problem of
controlling power usage by either shutting servers down or putting them into a sleep
state are considered in [3, 12, 29, 30, 32]. From the point of view of modeling, this
type of approach is more demanding, since the queuing model should account for the
setup times, which are the times required for the system to change state. In particular,
Mitrani [30] considers a system with a predefined block of servers, called reserves, which
can be turned on and off. A queuing model is derived for such system, and the average
cost of the system under steady state is calculated, from where optimal parameters are
chosen with the help of a heuristic. Niyato et al. [32] has a different approach, modeling
the optimization problem as a discrete time Markov decision process. Except for [29],
it is important to mention here that a common feature on the above works is that
they assume Poisson arrival and exponentially distributed service time requirements in
order to derive their queuing model. In [29], the authors consider systems with general
inter-arrival and service time distributions by combining their model with a probability
estimate derived from a heavy traffic analysis. However, this estimate was obtained
for systems in which servers cannot be turned on or off.

There are different approaches to combining the conflicting objectives of minimizing
power consumption and of providing reasonable quality of service. In [12], the so-
called energy-response time product is considered, where the cost of the system is
measured as a product of mean power consumption and mean customer response time.
In [28, 29, 30], the cost is calculated as the weighted sum of mean energy consumption
and a measure of average quality of service. In both of these cases, it is not an easy task
to choose weights for these measures, and the resulting policies may vary depending
on the weights chosen. Instead of combining these conflicting objectives into one cost
function, it seems more natural to adopt a constrained optimization approach, which
guarantees a certain level of quality of service in the system whilst minimizing energy
consumption. This approach, which is also adopted here, was first proposed in [32],
where the optimization problem is set as one of minimizing power consumption subject
to a maximum mean waiting time constraint.

In this paper, we consider optimal power management of parallel processing systems
with one queue and a large number of identical processing stations. The control is
performed by changing the state of a block of servers, called reserves, among active
and inactive states. In active states, the stations are operational whereas, in inactive
states, they are either sleeping or turned off. In either case, the reserve stations consume
less power but are also unable to service pending tasks. The transitions from one state
to the other require a setup time, where the stations may be actively consuming power
but cannot provide service. Therefore, there is a conflicting objective of minimizing
power consumption while maintaining a desired quality of service.

A distinguishing feature here, regarding previous literature on this subject, is that
we consider systems operating under a policy that may turn the reserve machines on
or off with setup times and under general inter-arrival or service time distributions.
This, in turn, brings to bear new modeling issues in this scenario. Our approach starts
from a novel point of view, which hinges on the following steps. Regarding the first
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issue, this is sorted out in this work by appending in our model a pure jump process
to account for the state of the reserve machines. As for the second issue, we are able
to consider a system with general inter-arrival and service time distributions via heavy
traffic approximation under an assumption that stations work together on pending
jobs and the work lost, when the stations shut down, is negligible (with respect to the
amount of work in the system). Systems that can be modeled under such assumptions
are, for instance, job-splitting systems, where individual jobs that join the system are
split into independent tasks among the available bank of processing servers. In this
regard, index servers in web search engines are practical examples of this type of service
[4]. When this assumption fails, we also provide a model with general inter-arrival times
and exponentially distributed service times.

To some extent, the linchpin of our approach to deal with general distribution is the
derivation of a heavy traffic approximation for this controlled system under a limiting
condition. Out of the bent which wends most of the literature on this subject, a novel
feature of this heavy traffic approximation is that the limit process is a controlled switch-
ing diffusion. The optimization problem is then set as an stochastic optimal control
problem with an ergodic cost and, optionally, subject to a quality of service constraint.
Since to carve out a closed analytical solution for the optimization problem is a rather
difficult task, a numerical approach is proposed using the Markov chain approximation
method (MCAM) [25] adapted to the diffusion with the jumping parameter considered
here. Numerical data is also presented, where optimal control problems are solved
numerically and the resulting controls applied to a queuing system simulation. Two
scenarios are then considered for the numerical experiments. In the first, an ergodic
cost combining the conflicting objective of power consumption and quality of service is
proposed. The setup is the same as the one presented in [30]. We show that the control
constructed via our approach gives better results than the heuristics presented in [30].
In the second scenario, a constrained optimization problem is proposed, where an er-
godic cost measuring power consumption is subject to a constraint with respect to the
system performance. These numerical experiments show that the switching diffusion
approximation works well and gives interesting insights about the problem.

It is perhaps noteworthy to mention that heavy traffic (or diffusion) approximations
are used here by the fact that exact queuing models that can capture transient behavior
under general inter-arrival and service time distributions assumptions are considered
intractable. This becomes even more challenging when one wishes to apply optimal
control methods. Diffusion approximation are constructed with only the first two
moments of the inter-arrival and service time distributions and are known to give good
estimates for the system when it is operating under a moderate or heavy demand
[23, 38]. In addition, control policies which were devised for a system under heavy
traffic are often found to work quite well under moderate conditions (see [24] and
references therein), since they are provisioned for the worst case.

Of highlight here also is the fact that the limiting condition assumed here was first
proposed by Halfin and Whitt in their seminal paper [16], where a sequence of queuing
systems with an increasing arrival rate and number of processing stations is considered.
Such limit condition reflects well the scenario of large data centers, which attend a
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very large population of customers and require a large cluster of processing stations.
The limit system is attained as the arrival rates increase to infinity together with the
number of servers, while the sequence of queuing systems approaches heavy-traffic. A
distinctive feature of the models considered here, which is not seen elsewhere, is that we
consider the convergence of controlled queuing systems and, as result, the limit process
is a controlled switching diffusion whose the drift parameter is subject to pure jump
process, that accounts for the different states of the reserve stations. More precisely,
we show that scaled models of the queuing systems operating a given control policy
converge weakly to a controlled switching diffusion with the same control policy.

A very brief résumé of the main differences of our approach, vis-à-vis previous ap-
proaches, goes as follows:

• Predicated on a policy that may turn the reserve machines on or off, which
is modeled here by a controlled pure jump process, in conjunction with heavy
traffic techniques and optimal control theory, we devise a new modeling for
the problem, via a controlled switching diffusion, which differs completely from
those of previous works.
• Through the adaptation of the Markov chain approximation method [25], we

are able to recast the optimization problem as a Markov decision process and
consider the problem of minimizing energy consumption subject to a quality of
service constraint.

An outline of the content of this paper is as follows. In Section 2 we provide the bare
essential of notations. The queuing models and some basic assumptions are introduced
in Section 3. Section 4 introduces the pure jump process and elaborates on the classes
of admissible controls. Next, in Section 5, we derive the heavy traffic approximations
for the queuing models. The control problem and the proposed numerical approach, via
the Markov chain approximation method, are presented in Section 6. In Section 7, some
numerical experiments are considered, where the optimal control is found numerically
and applied to a simulation. Finally, some conclusions are provided in Section 8. In
the Appendix A we present the proof of Lemmata 3.3, 5.4 and Theorems 6.1, 6.3

2. Notations

In what follows (Ω, F , P) stands for a probability space where the stochastic processes
are to be defined and E [·] denotes the mathematical expectation with respect to P.
The set of non-negative real numbers is denoted by R+ and the set of non-negative
integers is denoted by N0. For d ≥ 1, let Rd denote the d-dimensional Euclidean space.
For two real numbers a and b, let a ∧ b and a ∨ b denote the least and the greatest
of the two numbers, respectively. For a set S, let IS(·) denote its indicator function,
which takes value IS(s) = 1 if s ∈ S and 0 otherwise. Sometimes it is more convenient
to write I{s∈S} instead of IS(s), in these cases, we will use this alternative notation.
In addition, for S ⊆ R, C2

0(S × E) denotes the set of real valued functions on S × E
that are continuous with compact support and have continuous first and second partial
derivatives with respect to the first argument. For a Polish space U we denote by B(U)
its Borel σ-algebra and by P(U) the Polish space of probability measures on (U,B(U))
endowed with the Prohorov topology (the topology of weak convergence [6]). Unless
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mentioned otherwise, the stochastic processes considered here have sample paths that
are right-continuous with left-limits. Let DRd [0,∞) denote the set of such functions
ω : [0,∞) → Rd, which are continuous from the right and have limits from the left,
endowed with Skorohod’s J1 topology. We denote by CRd [0,∞) the set of continuous
functions ω : [0,∞) → Rd equipped with the topology of uniform convergence on
compact sets. We say that a sequence of stochastic processes {Xn} is tight if their
corresponding probability law L(Xn) form a tight sequence (see, e.g., [18, Chapter VI]
for more detail). In addition, we say that {Xn} is C-tight if it is tight and all the limit
points of {L(Xn)} assign probability 1 to the set of continuous functions CRd [0,∞).
Finally, more specific notation will be introduced throughout the paper according to
the necessity.

3. Queuing Models and Basic Assumptions

We consider queuing systems composed of one queue and n identical processing
stations. Since we are interested in the limit system, which is approached as the
number of stations and the arrival rates increase, we will index the model and some
of the driving stochastic processes with a superscript n. We shall refer to the queuing
system with n servers as the n-th system. This way, let us denote by {∆a,n

l }l∈N the
sequence of inter-arrival times for a system with n servers (or the n-th system), which
are assumed to be independent and identically distributed in l. Let An := {An(t)}t≥0

denote the counting process indicating, for each t ≥ 0, the number of job arrivals to
the n-th system by time t. That is An(t) := max{k ∈ N0 :

∑k
l=1 ∆a,n

l ≤ t}, for each

t ≥ 0, with the convention that
∑0

l=1 = 0. Let {∆d
l }l∈N denote the sequence of service

time requirements for each arriving job, which are assumed to be independent and
identically distributed random variables with finite variance and which are independent
of the inter-arrival times. We assume that the service time distribution is invariant as
the number of stations in the system increases, that is why the sequence is not indexed
with the superscript n.

As mentioned previously, in order to reduce the energy consumption, the system is
controlled by setting some of the machines in the system to an inactive state when the
demand is low and turning them back to an active state when the demand increases.
For simplicity, we henceforth refer to the active state of the machines as the on state
and the inactive state as the off state. Of the n machines present in the system,
we consider that o

n of them always stay on and the remaining r
n := (n − o

n) can
be turned on or off. The quantities o

n and r
n are indexed with the parameter n to

indicate that they may change when the number of servers n change. We suppose that
the stations change state together as a block, in the sense that they become ready
to be used and they shut down at the same time. We call rn the number of reserve
stations and, since the machines are identical, any of the n stations can be chosen to be
part of the reserve block at any given time. In order to model the state of the reserve
machines, let θn := {θn(t)}t≥0 be a controlled pure jump process taking values in a
finite set E. The precise definition of this process and the assumptions involved are
given later in Section 4. This process indicates the state of the reserve machines of the
n-th system at each time t. For example, we can consider the set of states E to be given
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by E = {0, 1, 2, 3}, where the state 0 indicates that the reserve machines are turned
off; the state 1 indicates that they are turning on; 2 indicates that they are turning
off and cannot work on pending tasks; and 3 indicates that they are operational. Let
f
n(i) denote the fraction of servers that are operational when the state of the reserve

machines is i. We suppose that there is always an i ∈ E such that f
n(i) = 1, this

corresponds to the case where every machine is turned on and operational. Using
the example described above, where E = {0, 1, 2, 3}, we can define: f

n(i) := o
n/n, if

i ∈ {0, 1, 2}, and f
n(i) := 1 if i = 3.

In order to characterize the limiting condition with increasing arrival rates and
servers, let us define the scaled arrival sequence {∆s,n

l } as follows:

∆s,n
l := n∆a,n

l , for each l ∈ N.(3.1)

In the spirit of the assumptions used by Halfin and Whitt [16] (mutatis-mutandis), we
consider the following assumptions.

Assumption 3.1. The sequence {|∆s,n
l |2;n} is uniformly integrable and, in addition,

there are positive constants λs and σ2
s such that:

λs,n := E [∆s,n
l ]−1 = (∆̄s,n)−1 → λs and σ2,n

s := E
[
(1− λs,n∆s,n

l )2
]
→ σ2

s ,

as n→∞.

Clearly Assumption 3.1 on ∆s,n
l and its definition given by (3.1) imply that the ar-

rivals become increasingly faster as the number of servers n increases. The condition
above is quite broad. For example, it would suffice to consider sequences of random
variables {∆s,n

l }l∈N that are identically distributed in n and have finite variance. In
practice however, since one is interested in one queuing system with fixed arrival and
service rates which is to be approximated by the limit system, this assumption serves
only to give precise conditions for the convergence of the random variables and asso-
ciated stochastic processes to their appropriate limits. We will discuss in more detail
how the n-th system can be approximated by the limit system in Section 5.3.

For later reference and in analogy to the notation introduced by Assumption 3.1, let
us introduce the following notation ∆̄d := E

[
∆d
l

]
, λd := (∆̄d)−1, ∆̄a,n := E [∆a,n

l ], and

λa,n := (∆̄a,n)−1. Let us define the traffic intensity parameter as ρn := λa,n∆̄d,n/n and,
in addition, let σ2

d := E
[
(1− λd∆d

l )
2
]

and notice that σ2,n
a := E [(1− λa,n∆a,n

l )2] = σ2,n
s .

As the arrival rate and the number of processing stations increase, the system ap-
proaches a condition called “heavy-traffic,” where the system is operating near its
maximum processing capacity. This is introduced in the model by the assumption
below. Recall that we assumed that there is one i ∈ E such that f

n(i) = 1, which
corresponds to a state of the processing stations where every machine is turned on and
operational. Therefore, the assumption below implies, in particular, that ρn → 1, as
n→∞.

Assumption 3.2. Let ρn := λa,n∆̄d/n be the traffic intensity parameter for the n-th
system. There is a function b : E → R such that:

bn(i) :=
√
n (ρn − f

n(i))→ b(i),(3.2)

for each i ∈ E.
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We now consider two models, which are assumed to satisfy Assumptions (3.1) and
(3.2) but differ in their service regime. In the first model, the machines in the sys-
tem work together to complete the pending jobs and, in addition, the work lost when
machines are turned off is assumed to be negligible. This is an approximation to the
behavior of large parallel systems that perform task splitting or task parallelization,
where the various processing stations act as if they were a single “fast” processor. For
example, in index servers of web search engines, jobs are divided into many (often n)
smaller tasks which are then assigned to different processors [4]. For the second model,
each processing station serves one individual job at a time and the service time require-
ments ∆d

l are assumed to be exponentially distributed. This is the same assumptions
used in [16], however, here we are interested in a heavy traffic approximation for the
controlled system. It was shown in [16] that such a system with general service time
requirements cannot be approximated via heavy traffic by a Markov process. This
is true unless a more general representation for the state is considered, such as the
ones used in [19, 33]. For notational convenience, in the following sections, we do not
distinguish the notation used for the driving processes in the two models, such as the
inter-arrival and service times or the controlled pure jump process representing the
state of the reserve machines.

3.1. Model I. In this section, we consider a workload model for the first queuing
system. Let Xn := {Xn(t)}t≥0 denote the workload process. That is, for each t ≥ 0,
Xn(t) represents the sum of pending service time requirements in the system at time
t or, equivalently, Xn(t) is the total time that a single processing station has to work
in order to complete the remaining work in the system at time t. We define Xn as
follows:

Xn(t) := Xn(0) +

An(t)∑
l=1

∆d
l − n

∫ t

0

f
n(θn(s))ds+Rn(t), t ≥ 0,(3.3)

where Xn(0) is the initial workload for the n-th system, which is assumed to be a
non-negative random variable, independent of the other driving processes. Except for
the introduction of the pure jump process θn, this form for the workload has been used
previously in the literature, see, for instance, the model of Section 5.3.1 of [23]. Notice
that nfn(θn(t)) represents the number of active stations at time t and, therefore, the
integral term in (3.3) accounts for the combined amount of processing time the queue

has received by time t ≥ 0. Clearly, the sum
∑An(t)

l=1 ∆d
l represents the total amount

of work that has arrived to the system by time t. The process Rn compensates the
possible idle time periods of the system, it is often referred to as the reflection process.
It is defined to be a non-decreasing process with initial condition Rn(0) = 0, which
may increase only at times t such that Xn(t) = 0. This process prevents Xn from
taking negative values. More precisely, Rn (together with Xn) is defined pathwisely
as the unique solution of the Skorohod problem for the unreflected process defined
analogously to Xn in (3.3), but without the reflection term (see [37]).
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In order to derive the heavy traffic limit, let us rewrite (3.3). We begin by defining
the processes Ma,n and Md as follows:

Ma,n(t) :=

btc∑
l=1

(1− λa,n∆a,n
l ), and Md(t) :=

btc∑
l=1

(1− λd∆d
l ), t ≥ 0,(3.4)

where btc denotes the largest integer not greater than t. Notice that

An(t)∑
l=1

∆d
l = −∆̄d

An(t)∑
l=1

(1− λd∆d
l ) + ∆̄d

An(t)∑
l=1

(1− λa,n∆a,n
l ) + ∆̄dλa,n

An(t)∑
l=1

∆a,n
l(3.5)

= −∆̄dMd(An(t)) + ∆̄dMa,n(An(t)) + ∆̄dλa,nt+ ∆̄dλa,nεa,n(t),

where εa,n(t) is an error term that accounts for the time difference between t and the
time of last arrival. Clearly, this error term εa,n(t) is bounded by ∆a,n

An(t)+1. Then, by

(3.4) and (3.5), we can re-write (3.3) as follows:

Xn(t) = Y n(t) +Rn(t) + εn1 (t),(3.6)

where

Y n(t) := Xn(0) + ∆̄d
[
Ma,n(An(t))−Md(An(t))

]
+ n

∫ t

0

[ρn − f
n(θn(s))] ds,(3.7)

Rn(t) := sup
s≤t

(−Y n(s)− εn1 (s)) ∨ 0,(3.8)

εn1 (t) := ∆̄dλa,nεa,n(t),(3.9)

for t ≥ 0, where ρn is the traffic intensity of Assumption 3.2. The form of the process
Rn in (3.8) is given by the solution of the one-dimensional Skorohod problem [37].

3.2. Model II. Now we consider the second queuing system, where the service time
requirements are exponentially distributed and the service is not parallelized (in the
sense that the servers are not working together on pending jobs). Let Qn denote the
number of customers in the system with n servers (including the customers in service).
Let An be the point process defined in the beginning of this section and let Dn denote
the departure process, i.e, Dn(t) represents the number of job departures by time t.
Since the service times are exponentially distributed, we can represent Dn by a time-
changed unit rate Poisson process as follows:

Dn(t) = N

(∫ t

0

λd
(

[fn(θn(s))n] ∧Qn(s)
)
ds

)
,

where N := {N(t)}t≥0 is a Poisson process with rate 1, which is independent of the

other driving processes. Recall that λd = E
[
∆d
l

]−1
denotes the service rate and, in

addition, notice that [fn(θn(t))n] ∧ Qn(t) indicates the number of active servers at
time t. Therefore, we can represent the process Qn(t) as the solution of the following
equation:

Qn(t) = Qn(0) + An(t)−N (T n(t)) , t ≥ 0,(3.10)
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where Qn(0) represents initial number of customers, which is assumed to be non-
negative and independent of the other driving processes, and T n is defined as

T n(t) :=

∫ t

0

λd
(

[fn(θn(s))n] ∧Qn(s)
)
ds, t ≥ 0.(3.11)

This time-changed representation for the departure process has been used in [27] for
an uncontrolled Markovian queue (with exponential arrival and service times) with n
servers. Although the point process An here may not be necessarily a Poisson process,
this representation is still valid, in the sense that there is a unique (up to indistin-
guishability) solution to (3.10), by the construction given in the proof of Theorem 4.1
(a) on page 327 of [9]. Notice that, in contrast to the model of Section 3.1, this time we
do not need to compensate for idle times, since the rate of the time-changed Poisson
process Dn(t) will be zero at times t such that Qn(t) = 0.

Proceeding in similar fashion to the previous section, let Ma,n be defined as in (3.4)

and let N̂ be the centered Poisson process N̂(t) = N(t)− t, for t ≥ 0. Notice that,

An(t) =

An(t)∑
l=1

(1− λa,n∆a,n
l ) + λa,n

An(t)∑
l=1

∆a,n
l = Ma,n(An(t)) + λa,nt+ λa,nεa,n(t),

where εa,n(t) is the error term accounting for the time difference between t and the
last arrival time, which is bounded by ∆a,n

An(t)+1. Therefore, we can re-write (3.10) as

follows:

Qn(t) = Qn(0) +Ma,n(An(t))− N̂ (T n(t))(3.12)

+ nλd
∫ t

0

[ρn − f
n(θn(s))] ∨ [ρn −Qn(s)/n] ds+ εn2 (t), t ≥ 0

where εn2 (t) := λa,nεa,n(t), and ρn is the traffic intensity of Assumption 3.2.
The scaled versions of the expressions (3.6)-(3.9) and (3.12) will be used to derive

the heavy traffic limit in Section 5.

3.3. The Scaled Queuing Systems. In this section, we present the scaled version of
the queuing models presented in the last section. We begin this section by presenting
some common notation for both models and a preliminary lemma that will be used in
Section 5.

Having in mind the definition of Ma,n and Md, given by (3.4) and that of An, let us
define the following scaled processes:

ma,n(t) := n−1/2Ma,n(nt), md,n(t) := n−1/2Md(nt),

an(t) := n−1An(t), m̃d,n(t) := n−1/2N̂(nt), for t ≥ 0,

The process N̂ is the centered Poisson process associated with the departure process
of Section 3.2.

Lemma 3.3. The sequences of processes {ma,n}, {md,n} and {m̃d,n} are C-tight and
the sequence {an} converges in probability to λs(·), where λs(t) := λst, for each t ≥ 0.
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Proof. This result is well-known but we provide a proof in the Appendix A for the sake
of completeness. �

In what follows, we present the scaled version of the queuing models of Section 3.1
and 3.2, respectively.

Queuing Model I: Let xn(t) := n−1/2Xn(t), for t ≥ 0, where Xn(t) satisfies (3.3).
By (3.6)-(3.9), notice that the scaled process satisfies the following equation:

xn(t) = yn(t) + rn(t) + ε̄n1 (t),(3.13)

with yn given by:

yn(t) := xn(0) +

∫ t

0

bn(θn(s))ds+ ∆̄d,nwn(t),(3.14)

where

wn(t) := ma,n(an(t))−md,n(an(t)),

and bn is given by (3.2), rn(t) := n−1/2Rn(t), and ε̄n1 (t) := n−1/2εn1 (t). Recall that εn1 (t)
is bounded by ∆dλa,n∆a,n

An(t)+1, therefore ε̄n1 (t) is bounded by n−1/2∆dλa,n∆a,n
An(t)+1 =

n−1/2∆dλs,n∆s,n
An(t)+1. For later use, let us define Fnt := σ{xn(s), θn(s); s ≤ t} for each

t ≥ 0, which denotes the σ-algebra generated by {xn(s), θn(s); s ≤ t}.
Queuing Model II: For this model, we use a different type of scaling, which is similar
to the one used in [16]. Let us define

qn(t) := n−1/2(Qn(t)− nρn), t ≥ 0,

where Qn satisfies (3.12). Let the function gn : R× E → R be given by

gn(ξ, i) = λd
(
bn(i) ∨ −ξ

)
.(3.15)

By (3.12), we have that qn satisfies:

qn(t) = qn(0) +

∫ t

0

gn(qn(s), θn(s))ds+ w̃n(t) + ε̄n2 (t), t ≥ 0(3.16)

where

w̃n(t) := ma,n(an(t))− m̃d,n(T̄ n(t)),

ε̄n2 (t) := n−1/2εn2 (t) and T̄ n(t) = n−1T n(t), t ≥ 0. Notice that using (3.11) and the
function gn given by (3.15), T̄ n can be rewritten as:

T̄ n(t) := λs,nt− n−1/2

∫ t

0

gn(qn(s), θn(s))ds.(3.17)

Similarly to what was done in the previous paragraph, let us define F̃nt := σ{qn(s),
θn(s); s ≤ t}.
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4. On the Pure Jump Process and the Control

We have defined in Section 3 the process θn as a controlled pure jump process taking
value in a finite set E, which represents the state of the reserve machines. In this
section, we present the assumptions on this process θn and the class of admissible
controls. In order to have an interchanging notation for the two queuing models, let
{Gnt } denote either the filtration {Fnt }, when considering model I, or {F̃nt }, when
considering model II. Also, let (zn, G) denote either (xn,R+), for model I, or (qn,R),
for model II.

We begin by describing the class of controls considered here, which are usually
called randomized Markovian controls in the Markov decision process literature (see,
for instance, [15, Chapter 2]). A favorable feature of this class, in the context of
this paper, is that it allows us to represent the policies determined by the numerical
methods of Section 6. In order to define this class of controls, let U be a compact
subset of the real numbers and P be the set of probability measures on U , endowed
with the Prohorov metric. The set U represents the set of all possible control values.
A randomized Markovian control is then defined as a Borel measurable function v on
G× E taking values in P (i.e., v : G× E → P) 1.

Such controls, which assign a probability measure over the set of control values for
a given state of the system, are sometimes called relaxed controls in the literature
(see, for instance, [7]). Here, however, we leave this terminology to the more general
relaxation (as in [22, Section 3.3]) that also includes the time variable, which will be
presented later in this section. Relaxed control comes up in this paper as an essential
tool in the context of the heavy traffic analysis. These relaxed controls are more
suitable to derive the heavy traffic limit theorems. As will be clear in the following, we
simply account here for the relaxed controls which are associated with a randomized
control. Essentially, we consider the relaxed control which are obtained via an integral
representation of the randomized control as in (4.2) implying that this relaxed control
is an admissible control, as elaborated later on.

Before we go into the issue of the relaxed control we tarry for a moment in order to
introduce an assumption. Except for the convergence of the transition rates, which is
necessary for the heavy traffic analysis, this assumption has been used previously in
the literature (see, for instance, (2.2) of [13, p. 1188] or (2.5) of [15, p. 11] and the
discussion thereafter).

Assumption 4.1. For a randomized Markovian control v : G×E → P , the associated
transition rate functions λnij : U → R are such that:

lim
δ↓0

1

δ

{
P(θn(t+ δ) = j|θn(t) = i,Gnt )− δij

}
=

∫
U
λnij(α)v(zn(t), i)(dα), t ≥ 0,(4.1)

for each i, j ∈ E, where δij is Kronecker’s delta function and, for each α ∈ U and
n, the matrix Λn(α) := {λnij(α)} satisfies λnij(α) ≥ 0 and λnii(α) = −

∑
j 6=i λ

n
ij(α).

1Note that the definition of randomized Markovian control used here relates to the definition given
in [15] by πt(C, i) = v(zn(t), i)(C) for a state i ∈ E and C ∈ B(U). In [15], the control policy is not
dependent on another process as it is the case here.
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In addition, we assume that there are functions λij : U → R such that λnij → λij
uniformly as n → ∞ for each i, j ∈ E. This implies in particular that λij(α) ≥ 0 and
λii(α) = −

∑
j 6=i λij(α), for each α ∈ U .

Some remarks are now in order:

Remark 4.2. Of course the convergence of the matrices Λn to Λ is easily satisfied when
Λn = Λ for all sufficiently large n. Since, in practice, we usually consider a fixed queuing
system with a fixed size n, which is approximated by the heavy traffic limit model, this
condition is only introduced here to define precisely the notion of convergence needed
to show the limit theorems and to allow greater generality to the results.

Remark 4.3. Notice that one can construct a pure jump process θn satisfying (4.1) that
is adapted to {Gnt } for any given randomized Markovian control v and transition rate
functions λnij : U → R satisfying the conditions of Assumption 4.1. Since zn represents
either xn or qn, it has piecewise linear sample paths that behave deterministically
between the jump-times of (zn, θn). Therefore, θn can be constructed as pieced together
non-homogeneous continuous-time Markov chains on E between the jump times of zn.

Relaxed controls: relaxed controls are very useful in showing the weak convergence
of control sequences. This class of controls will be used in the proofs of Theorems 5.5
and 5.7. We will discuss in this section how randomized Markovian controls applied
to the stochastic process of interest, i.e., v(zn, θn), can be represented as an admissible
relaxed control, µn, with respect to the filtration engendered by (zn, θn). A sequence
of such admissible relaxed controls {µn} are easily shown to be tight since the space
of relaxed controls, as discussed below, is compact. In order to characterize a weakly
converging subsequence of {µn} with limit µ, we use Lemma 5.4 (of the next section)
in order to show that µ is the relaxed control associated with the same randomized
Markovian control v applied to the limit processes (z, θ).

In this sense, we will briefly introduce some notation and recall a few results about
this subject. As before, let U be compact and R(U× [0,∞)) denote the set of measures
µ(·) on B(U × [0,∞)) satisfying µ(U × [0, t]) = t for all t ≥ 0, where B(U × [0,∞))
denotes the σ-algebra of Borel subsets of U × [0,∞). We endow R(U × [0,∞)) with the
weak compact topology, induced by the following notion of convergence: a sequence
{µn} ⊂ R(U × [0,∞)) converges to µ ∈ R(U × [0,∞)) if and only if∫ ∞

0

∫
U
ϕ(α, s)µn(dαds)→

∫ ∞
0

∫
U
ϕ(α, s)µ(dαds), as n→∞,

for all real valued continuous functions ϕ that have compact support. The space
R(U × [0,∞)) is compact under this topology, since U is compact. This implies that
any sequence has a converging subsequence (for more detail, see [22, p. 47]).

A random variable µ defined on a filtered probability space (Ω, F , {Ft}, P) taking
values in R(U × [0,∞)) is called an admissible relaxed control with respect to {Ft} if
the function defined as µ(B, t) := µ(B × [0, t]) is {Ft}-adapted for each B ∈ B(U).
Since µ(B, t) are non-decreasing in t, the derivative of µ(B, t) with respect to t, which
we will denote by µt(B), exists for almost all t, for each B.
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Now, let v : G × E → P be a randomized Markovian control, and let (ζ, ϑ) be a
stochastic process taking values in G × E that is adapted to a filtration {Ft}. Then,
we can define a relaxed control µv associated with v := v(ζ, ϑ) as follows:

µv(B × S) :=

∫
S

v(ζ(s), ϑ(s))(B)ds,(4.2)

for each B × S ∈ B(U × [0,∞)). That is, v(ζ(·), ϑ(·))(B) is the derivative of µv(B, ·).
In addition, (4.2) implies that µv is an admissible control with respect to {Ft}.

5. Switching Diffusion Approximations

In this section we present the heavy traffic limit theorems. We show that the scaled
versions of the queuing models presented in Section 3.1 and 3.2 controlled (through
θn) by a given randomized Markovian control v converge in distribution to a switching
diffusion controlled by the same control function v. For model I, this limit controlled
switching diffusion can be formally defined as the pair (x, θ) taking values in R+ × E
satisfying the following equations:

x(t) = x(0) +

∫ t

0

b(θ(s))ds+ σw(t) + r(t),(5.1)

P (θ(t+ δ) = j| θ(t) = i, x(s), θ(s), s ≤ t) =

∫
U
λij(α)v(x(s), θ(s))(dα)δ + o(δ),(5.2)

for t ≥ 0, i 6= j, where b : E → R is given by (3.2), σ > 0 the diffusion coefficient
and w is a standard Brownian motion, and r is the “reflection process,” which is non-
decreasing, increases only at time t ≥ 0 such that x(t) = 0 and satisfies r(0) = 0.
The function v : R+ × E → P in (5.2) is the randomized Markovian control function
and λij : U → R are the controlled transition rate functions for θ, which are assumed
(under Assumption 4.1) to satisfy λij(α) ≥ 0, for i 6= j, and λii(α) = −

∑
j 6=i λij(α),

for each i ∈ E and α ∈ U .
For model II, the limit controlled switching diffusion process (q, θ) is defined likewise,

where q satisfies an equation similar to (5.1), except that the reflection term r in (5.1)
is not present and the drift term depends on q, that is,

q(t) = q(0) +

∫ t

0

g(q(s), θ(s))ds+ %w(t), t ≥ 0(5.3)

where g : R× E → R is the drift function, given by

g(ξ, i) = λd
(
b(i) ∨ −ξ

)
,(5.4)

% > 0 is the diffusion coefficient, and the process θ satisfies (5.2) with q in place of x,
for a control function v : R× E → P .

The weak convergence of each model is considered separately in the following Sections
5.1 and 5.2. In Section 5.3, we show how one can use the switching diffusion limits to
approximate the behavior of these queuing systems.
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5.1. Switching Diffusion Approximation for Model I. We begin this section by
defining precisely the switching diffusion considered here. We follow the approach in
[13] and write the process as a jump-diffusion. Let (Ω, F , {Ft}, P) be a filtered prob-
ability space (satisfying the usual conditions), where the processes are to be defined.
Let v : R+×E → P be a randomized Markovian control and let λvij : R+ → R be given
by:

λvij(ξ) :=

∫
U
λij(α)v(ξ, i)(dα), for i, j ∈ E and ξ ∈ R+,(5.5)

where λij are given by Assumption 4.1. Similarly to [13], for each ξ ∈ R and v ∈ P ,
let {∆v

ij(ξ)}i,j∈E be disjoint intervals of the real line, where each interval ∆v
ij(ξ) has

length λvij(ξ). Let hv : R+ × E × R→ R be defined by

hv(ξ, i, γ) :=
∑
j∈E

(j − i)I{γ∈∆v
ij(ξ,i)}.

Recall that I{·∈S} denotes the indicator function of the set S.
Now let x0 and θ0 be given F0-measurable random variables taking values in R+

and E, respectively. Let w be a standard Brownian motion, which is a martingale
with respect to {Ft} and independent of x0 and θ0, and let p be a Poisson random
measure relative to {Ft}, independent of w, x0, θ0 and with intensity dt×m(dγ), where
m denotes the Lebesgue measure in R. The pair (x, θ) is a reflected controlled switching
diffusion with initial condition (x0, θ0), drift function b : E → R and diffusion coefficient
σ > 0 if x is a continuous {Ft}-adapted process; θ is a right-continuous with left-limits
{Ft}-adapted process; and (x, θ) satisfy the following equations:

x(t) = x0 +

∫ t

0

b(θ(s))ds+ σw(t) + r(t)(5.6)

θ(t) = θ0 +

∫ t

0

∫
R
hv(x(s), θ(s−), γ)p(ds, dγ) for t ≥ 0,(5.7)

for some continuous non-decreasing process r, satisfying r(0) = 0, which increases only
in times t such that r(t) = 0. In particular, r satisfies:

r(t) =

∫ t

0

I{x(s)=0}dr(s).(5.8)

Theorem 5.1. Given (x0, θ0), v, w, and p, as specified in the above paragraph, there
is a unique reflected controlled switching diffusion (x, θ) satisfying (5.6) and (5.7) for
a given drift function b and diffusion coefficient σ > 0.

Proof. It is well known that there is a strong solution for a reflected diffusion of the
form:

x(t) = x0 +

∫ t

0

b(i)ds+ σw(t) + r(t),

for each i ∈ E (see [37]). The result then follows by the same construction via an
interlacing procedure and the unicity argument, which are used in Theorem 3.1 of [31,
p. 2457]. �
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We now define the associated infinitesimal generator to the above defined reflected
controlled switching diffusion. This generator will be defined with respect to a relaxed
control. This more general approach will be useful in showing weak convergence in
Theorem 5.5. For a relaxed control µ, the infinitesimal generator, which is denoted
by Lµ, has domain given by D+ := {f ∈ C2

0(R+ × E)|fx(0, i) ≥ 0, i ∈ E}, where fx
denotes the partial derivative of f with respect to the first argument and Lµ is defined
as follows:

(Lµf)(s, ξ, i) = b(i)fx(ξ, i) +
σ2

2
fxx(ξ, i) +

∑
j∈E

∫
U
f(ξ, j)λij(α)µs(dα),(5.9)

for (s, ξ, i) ∈ [0,∞)×R+×E and function f in the domain D+ of Lµ, where fxx denotes
the second partial derivative with respect to the first argument. Whenever µ is the
relaxed control associated with the randomized Markovian control v, as given by (4.2),
we will use the following notation for the infinitesimal generator Lv. Although it is an
slight abuse of notation, it is very convenient and simplifies the notation considerably.

Now we define the associated submartingale problem. Recall the definition of xn

and θn as the scaled processes for model I, defined by (3.13)-(3.14) and (4.1). This
submartingale problem will be used to characterize the weak-sense limit of the processes
(xn, θn) and that of the control v(xn, θn) as well as to establish the desired adaptiveness
property for the limit processes.

Definition 5.2. [21, p. 146] Suppose that (ζ, ϑ) is a stochastic process with sample
paths that are right-continuous with left limits. Let µ be a relaxed control. The process
(ζ, ϑ) is said to solve the submartingale problem for Lµ if there exists a filtration {Ft}
such that (ζ, ϑ) is {Ft}-adapted, µ is an admissible control with respect to {Ft} and
the process defined by:

f(ζ(t), ϑ(t))− f(ζ(0), ϑ(0))−
∫ t

0

(Lµf)(s, ζ(s), ϑ(s))ds, t ≥ 0

is an {Ft}-submartingale for each f ∈ D+.

Remark 5.3. Notice that a function f ∈ D+ can be smoothly extended to have domain
R2, so that this extension, f̄ , satisfies f̄x(0, i) ≥ 0, for i ∈ E, f̄ = f on R+ × E and
belongs to C2

0(R2), the set of real valued functions on R2 that are continuous, have
compact support, and have continuous first and second partial derivatives. Using Itô’s
formula (see, Theorem 4.57 [18, p. 57]) on this extended function f̄ , we have that a re-
flected controlled switching diffusion satisfying (5.6) and (5.7) solve the submartingale
problem for Lv as stated above.

Let {Fnt } be the filtration given by σ{xn(s), θn(s); s ≤ t}. Given the discussion
above, it is clear that the martingale property given below is useful to characterize the
weak-sense limit. Using (4.1), the fact that xn is continuous almost everywhere and
under the assumption of Lemma 5.4, given below, we have that

Mn
f (t) := f(θn(t))− f(θn(0))−

∫ t

0

∑
j∈E

∫
U
λnθn(s)j(α)f(j)v(xn(s), θn(s))(dα)ds(5.10)
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is an {Fnt }-martingale, for any function f : E → R.
The following lemma will be used to characterize the weak-sense limit of the control.

It says that if (x, θ) satisfies the submartingale problem for Lµ, for some relaxed control
µ, then the law induced by x assigns zero probability to sample functions that spend
more than a negligible amount of time at the set of discontinuity points of v. This
implies that if (xn, θn) converges weakly to (x, θ) and the latter is a solution to the
martingale problem for Lµ, then the relaxed control µv

n
associated with v(xn, θn),

as in (4.2), converges to µ, whose derivative has the same law as v(x, θ). The control
policies determined by the numerical methods of Section 7 satisfy the piecewise constant
assumption of the lemma below.

Lemma 5.4. Let v be a randomized Markovian control function which is piecewise con-
stant and has a finite number of discontinuity points with respect to the first argument.
Suppose that µ is a relaxed control and that (x, θ) is a solution to the submartingale
problem for Lµ. Let Gd denote the finite set of discontinuity points of v and let us
define the neighborhood Nε(Gd) = {x ∈ G | dist(x,Gd) ≤ ε} for ε > 0. Then, for any
t ≥ 0 and δ > 0 we have that:

lim
ε→0

P
(∫ t

0

INε(Gd)(x(s))ds ≥ δ

)
= 0.

Proof. See the Appendix A. �

Now we are ready to present the main theorem of this section.

Theorem 5.5. Suppose that the initial condition for the n-th system (xn(0), θn(0))
converges weakly to (x0, θ0), a random variable taking values in R+ × E. Let (xn, θn)
be the stochastic process satisfying (3.13)-(3.14) and (4.1) for a randomized Markovian
control v satisfying the assumption on Lemma 5.4. Then (xn, θn) converges in distribu-
tion to the reflected controlled switching diffusion having initial condition (x0, θ0), drift

given by (3.2), diffusion coefficient σ :=
√
λs(∆̄d)2(σ2

a + σ2
d) and control v.

Proof. We begin by showing tightness of the sequence Ψn = {(xn, θn)}. Notice that
(4.1) together with the assumption that λnij → λij implies that {θn} is tight by Theorem

2.7(a) of [20, p. 10]. Let dn(·) :=
∫ ·

0
bn(θn(s))ds, Theorem 2.7(a) of [20, p. 10] can also

be used to show that {dn} is tight. It is also asymptotic continuous, or C-tight, since
dn is continuous (e.g., Proposition VI.3.26 of [18, p. 351]). In addition, by Lemma 3.3,
{(ma,n,md,n, an)} is C-tight and since the composition mapping is continuous (e.g.,
Theorem 3.1 of [39, p. 75]), we have that {wn} is also C-tight. Therefore, {yn} is
C-tight.

Recall that the error term ε̄n1 (t) := n−1/2εn1 (t), appearing in (3.13), is bounded by
n−1/2∆̄dλs,n∆s,n

An(t)+1 and let us define the process ηs,n as the one taking values ηs,n(t) :=

n−1/2∆s,n
An(t)+1, for t ≥ 0. Now, for T > 0, let pn := P (An(T ) > λsn(T + δ)), then we
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have

P
(

sup
t≤T
|ηs,n(t)| ≥ δ

)
(5.11)

≤ P

(
sup

l≤An(T )+1

n−1/2|∆s,n
l | ≥ δ, An(T ) ≤ λsn(T + δ)

)
+ pn

≤
λsn(T+δ)+1∑

l=1

P
(
|∆s,n

l | ≥ δn1/2
)

+ pn

≤ E
[
I{|∆s,n

1 |≥δn1/2}|∆
s,n
1 |2

] λsn(T + δ) + 1

δ2n
+ pn,

where we used Chebychev’s inequality in the third line and the fact that ∆s,n
l are

identically distributed. Since {∆s,n
1 ;n} is uniformly integrable and by Lemma 3.3, we

have that the right-hand side of (5.11) goes to zero as n → ∞. Hence, ηs,n and ε̄n1
converge in probability to the “zero” process. This, together with the fact that {yn}
is C-tight, implies that the sequences {xn} and {rn} are C-tight since the reflection
map is continuous (see, e.g., [40, p. 439]). Therefore, we have shown that {(xn, θn)} is
tight.

Now we characterize the limit of any weakly converging subsequence of {(xn, θn)}
as a solution to the submartingale problem for Lµ, for some relaxed control µ. For
this, suppose that (x, θ) is a weak-sense limit of a converging subsequence and let {Ft}
be its natural filtration. Let p be an integer and {tk}pk=1 a set of real numbers such
that 0 ≤ tk ≤ t for each k = 1, . . . , p. Let hk : R+ × E → R be continuous and
bounded functions, for k = 1, . . . , p. In order to show that (x, θ) is a solution to the
{Ft}-submartingale problem for Lµ, it is enough to show that it satisfies:

E

[[
f(x(t+ τ), θ(t+ τ))− f(x(t), θ(t))

] p∏
k=1

hk(x(tk), θ(tk))

]
(5.12)

≥ E

[∫ t+τ

t

(Lµf)(s, x(s), θ(s))ds

p∏
k=1

hk(x(tk), θ(tk))

]
,

fore each t, τ ≥ 0, f ∈ D+, p, {tk}pk=1 and continuous and bounded functions {hk}pk=1.
Now, we will show (5.12). For that, let µn be the relaxed control associated with

v(xn, θn), in the sense of (4.2). Since R(U × [0,∞)) is compact, the sequence {µn}
is tight. Now let Υn := (xn, θn, yn, rn, ma,n, md,n, an, ηs,n, ε̄n1 , µ

n), we have already
shown that {Υn} is tight. Let us extract a weakly converging subsequence from {Υn},
for convenience of notation, this converging subsequence will also be indexed with the
subscript n, and let Υ := (x, θ, y, r,ma,md, a, ηs, ε̄1, µ) denote its weak sense limit.
We use the Skorohod Representation Theorem, so that we can suppose that each
component of Υn converges almost surely in their appropriate topologies. Let G̃nt
denote the minimal σ-algebra with respect to which {Υn(s); s ≤ t} is measurable.

For given f ∈ D+, t, τ ≥ 0, define sa,n0,t := t and sa,ni,t := s̃a,ni,t ∧ (t+ τ), where {s̃a,ni,t } are
the (increasing in i) jump times of an after t for i ∈ {1, 2, . . . }. Let da,ni,t := |sa,ni+1,t−s

a,n
i,t |,
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i ≥ 0, and notice that da,ni,t ≤ ∆a,n
l = n−1∆s,n

l , for some l ≥ 1. Therefore, supi d
a,n
i,t → 0

a.s. as n→∞ by the a.s. convergence of ηs,n to the zero process. Now, notice that

f(xn(t+ τ), θn(t+ τ))− f(xn(t), θn(t))(5.13)

=
∞∑
i=0

I{sa,ni,t <t+τ}
[
f(xn(sa,ni+1,t), θ

n(sa,ni+1,t))− f(xn(sa,ni,t ), θn(sa,ni,t ))
]
.

Considering the term inside the bracket for some i such that sa,ni,t < t + τ and using
Taylor’s Theorem, we have that

f(xn(sa,ni+1,t), θ
n(sa,ni+1,t))− f(xn(sa,ni,t ), θn(sa,ni,t ))(5.14)

= f(xn(sa,ni,t ), θn(sa,ni+1,t))− f(xn(sa,ni,t ), θn(sa,ni,t )) + ∆x,n
i+1,tfx(x

n(sa,ni,t ), θn(sa,ni,t ))

+ (∆x,n
i+1,t)

2fxx(x
n(sa,ni,t ), θn(sa,ni,t )) + δn1,i + δn2,i + δn3,i + δn4,i,

where ∆x,n
i+1,t is defined to be

∆x,n
i+1,t :=

∆̄d

√
n

(
ξa,ni+1,t − ξdi+1,t

)
+

∫ sa,ni+1,t

sa,ni,t

bn(θn(s))ds+

∫ sa,ni+1,t

sa,ni,t

drn(s),(5.15)

ξa,ni+1,t := (1 − λa,n∆a,n
i+1,t) and ξdi+1,t := (1 − λd∆d

i+1,t), with ∆a,n
i+1,t and ∆d

i+1,t denoting
the (i + 1)-th inter-arrival and service time after time t, respectively. In addition, the
terms δnj,i, j = 1, . . . , 4, above are given by

δn1,i = ∆x,n
i+1,t

[
fx(x

n(sni,t), θ
n(sa,ni+1,t))− fx(xn(sni,t), θ

n(sa,ni,t ))
]

δn2,i = (∆x,n
i+1,t)

2
[
fxx(x

n(sa,ni,t ) + dni , θ
n(sa,ni+1,t))− fxx(xn(sa,ni,t ), θn(sa,ni+1,t))

]
δn3,i = (∆x,n

i+1,t)
2
[
fxx(x

n(sa,ni,t ), θn(sa,ni+1,t))− fxx(xn(sa,ni,t ), θn(sa,ni,t ))
]

δn4,i = ∆ε̄,n
i+1,t

[
∆x,n
i+1,tfx(x

n(sni,t), θ
n(sa,ni+1,t)) + (∆x,n

i+1,t)
2fxx(x

n(sa,ni,t ), θn(sa,ni+1,t))
]

for dni = cni ∆x,n
i+1, cni ∈ [0, 1], and ∆ε̄,n

i+1,t := (ε̄n1 (sa,ni+1,t) − ε̄n1 (sa,ni,t )). By (5.15), we have
that

E
[

∆x,n
i+1,t

∣∣ G̃nsa,ni,t ] = E

[∫ sa,ni+1,t

sa,ni,t

bn(θn(s))ds+

∫ sa,ni+1,t

sa,ni,t

drn(s)

∣∣∣∣∣ G̃nsa,ni,t
]
,(5.16)

and also that

E
[

(∆x,n
i+1,t)

2
∣∣ G̃nsa,ni,t ] =

(∆̄d)2 (σ2,n
a + σ2

d)

n
+ E

[
δni,5
∣∣ G̃nsa,ni,t ] ,(5.17)

where the term δni,5 is such that

δn5,i ≤
2∆̄d,n

√
n

(
ξa,ni+1,t − ξdi+1,t

)(∫ sa,ni+1,t

sa,ni,t

bn(θn(s))ds+

∫ sa,ni+1,t

sa,ni,t

drn(s)

)

+ 2

(∫ sa,ni+1,t

sa,ni,t

bn(θn(s))ds

)2

+ 2

(∫ sa,ni+1,t

sa,ni,t

drn(s)

)2

.
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Therefore, using the expansion given by (5.14), the conditional expectation of the
difference (5.13) with respect to G̃nt can be written as:

E

[
∞∑
i=0

I{sa,ni,t <t+τ}
∫ sa,ni+1,t

sa,ni,t

∑
j∈E

∫
U
λnθn(s)j(α)µns (dα)f(xn(sa,ni,t ), j)ds(5.18)

+
∞∑
i=0

I{sa,ni,t <t+τ}
∫ sa,ni+1,t

sa,ni,t

bn(θn(s))fx(x
n(sa,ni,t ), θn(sa,ni,t ))ds

+
∞∑
i=0

I{sa,ni,t <t+τ}
∫ sa,ni+1,t

sa,ni,t

fx(x
n(sa,ni,t ), θn(sa,ni,t ))drn(s)

+
∞∑
i=0

I{sa,ni,t <t+τ}
λs,n(∆̄d)2 (σ2,n

a + σ2
d)

2

∫ sa,ni+1,t

sa,ni,t

fxx(x
n(sa,ni,t ), θn(sa,ni,t ))ds

∣∣∣∣∣ G̃nt
]
,

module the terms involving δnj,i, for j = 1, . . . , 5, where we used the martingale property
given by (5.10) in the first line, but with the derivative µn· replacing v(xn, θn), we used
(5.16) for the second and third line and, for the last line, we used (5.17) and the fact
that

1

n
= λs,n∆̄a,n = λs,nE

[
(sa,ni+1,t − s

a,n
i,t )
∣∣ G̃nsa,ni,t ] ,

by (3.1). Assume for now that the terms involving δnj,i converge almost surely to zero.
Now, let us define the piecewise constant versions of xn and θn as

x̌n(s) := xn(sa,ni,t ) for s ∈ [sa,ni,t , s
a,n
i+1,t),

θ̌n(s) := θn(sa,ni,t ) for s ∈ [sa,ni,t , s
a,n
i+1,t).

Therefore, we have that (5.18) can be further rewritten as:

E
[ ∫ t+τ

t

∑
j∈E

∫
U
λnθn(s)j(α)µns (dα)f(x̌n(s), j) + bn(θn(s))fx(x̌

n(s), θ̌n(s))

(5.19)

+
λs,n(∆̄d)2 (σ2,n

a + σ2
d)

2
fxx(x̌

n(s), θ̌n(s))ds+

∫ t+τ

t

fx(x̌
n(s), θ̌n(s))drn(s)

∣∣∣G̃nt ].
Since R(U × [0,∞)) is endowed with the topology of weak convergence, we have that:∫ t+τ

t

∫
U
λnθn(s)j(α)µns (dα)f(x̌n(s), j)ds =

∫ t+τ

t

∫
U
λθ(s)j(α)µns (dα)f(x(s), j)ds+ δ̃nj

−→
∫ t+τ

t

∫
U
λθ(s)j(α)µs(dα)f(x(s), j)ds, a.s.,
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for each j ∈ E, where δ̃nj is given by

δ̃nj =

∫ t+τ

t

∫
U

[
λnθn(s)j(α)f(x̌n(s), j)− λθ(s)j(α)f(x(s), j)

]
µns (dα)ds

=

∫ t+τ

t

∫
U

{ [
λnθn(s)j(α)− λθn(s)j(α)

]
f(x̌n(s), j)

+
[
λθn(s)j(α)− λθ(βn(s))j(α)

]
f(x̌n(s), j) +

[
λθ(βn(s))j(α)− λθ(s)j(α)

]
f(x̌n(s), j)

+ λθ(s)j(α) [f(x̌n(s), j)− f(x(s), j)]
}
µns (dα)ds,

where βn are non-decreasing functions mapping [0, T ] to [0, T ], for T > t + τ . Notice
that Proposition 5.3 of [9, p. 119], together with the assumption that λnij converges
uniformly to λij, the fact that f is continuous with respect to its first argument and
that θ has at most a finite number of discontinuity points in a bounded time interval,
implies that δ̃nj → 0 a.s..

Therefore, multiplying (5.19) by
∏p

k=1 hk(x
n(tk), θ

n(tk)), where p, {tk}pk=1 and {hk}pk=1

are defined as in (5.12), taking expectation and the limit as n→∞, we get

E

[(∫ t+τ

t

(Lµf)(s, x(s), θ(s))ds+

∫ t+τ

t

fx(x(s), θ(s))dr(s)
) p∏
k=1

hk(x(tk), θ(tk))

]
,

by Lebesgue’s Dominated Convergence Theorem, the fact f can be smoothly extended
to C2

0(R2) as in Remark 5.3, that (x, r) is continuous a.s., and θ has a finite number of
jumps in a finite time interval. Since (x, r) is the solution of the Skorohod problem for
y and by the continuity of the reflection map, the process r must satisfy (5.8). This
implies that ∫ t+τ

t

fx(x(s), θ(s))dr(s) ≥ 0,

since fx(0, ·) ≥ 0 and, therefore, we complete the proof of (5.12) by showing that the
terms

∑∞
i=0 I{sa,ni,t <t+τ}δ

n
j,i, for j = 1, . . . , 4, and

∑∞
i=0 I{sa,ni,t <t+τ}δ

n
5,ifxx(x

n(sa,ni,t ), θn(sa,ni,t ))

that were omitted in (5.18) converge to zero in the mean.
In order to show that, let us first consider the case j = 1. By Proposition 5.3 of [9, p.

119], there is a sequence of non-decreasing functions {βn} mapping [0, T ] to [0, T ], for
T > t+τ , such that sups∈[t,t+τ ]

{
fx(x

n(sni,t), θ
n(s))− fx(xn(sni,t), θ(β

n(s)))
}
→ 0 almost

surely as n→∞. Also, ∆x,n
i+1,t → 0 almost surely as n→∞, since ma,n, md,n, dn, and

rn are asymptotically continuous processes. This together with the fact that θ has at
most a finite number of jumps in finite time completes the proof for j = 1. For the
remaining terms, where j 6= 1, the argument is similar, using in addition the facts that
fxx is continuous with respect to the first argument and ε̄n1 converges a.s. to the zero
process.

Now that we have shown that (x, θ) is a solution to the submartingale problem for
Lµ, we can characterize the limit of the relaxed control sequence {µn}. By Lemma 5.4,
the law induced by x does not charge sets whose sample functions spend more than a
negligible amount of time near the discontinuity points of v(·, i). With this lemma and
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using the Skorohod representation, it is straight forward to show that∫ t

0

∫
U
ϕ(α, s)I{θn(s)=i}µ

n(dαds) =

∫ t

0

∫
U
ϕ(α, s)v(xn(s), i)ds

−→
∫ t

0

∫
U
ϕ(α, s)v(x(s), i)ds, a.s.,

as n → ∞, for all real valued continuous functions ϕ that have compact support and
i ∈ E. This implies that µ, which is the limit of µn, is the relaxed control associated
with v(x, θ), in the sense of (4.2). Thus, (x, θ) is a solution to the submartingale
problem for Lv. In addition, since (x, r) is the solution to the Skorohod problem for y,

where y satisfies: y(t) = x0 +
∫ t

0
b(θ(s))ds + σw(t), t ≥ 0, (x, θ) is the unique solution

of (5.6) and (5.7). �

5.2. Switching Diffusion Approximation for Model II. Now we consider the
switching diffusion approximation for model II. The approach is similar, we show that
{(qn, θn)} is tight and that any converging subsequence converges to the solution of
a martingale problem. This time we have a martingale problem instead of the sub-
martingale problem considered in the previous section since the limit process for this
model is not reflected.

Similarly to Section 5.1, let (Ω,F , {Ft},P) be a stochastic basis under the usual
assumptions where the stochastic processes are to be defined. Let q0 and θ0 be given
F0-measurable random variables taking values in R and E, respectively. Let w be a
standard Brownian motion, which is a martingale with respect to {Ft} and independent
of q0 and θ0, and let p be a Poisson random measure relative to {Ft}, independent of
w, q0, θ0 and with intensity dt×m(dγ), where m denotes the Lebesgue measure in R.
The pair (q, θ) is a controlled switching diffusion with initial condition (q0, θ0), drift
function g : R×E → R, diffusion coefficient % > 0 and randomized Markovian control
v : R× E → P if q is a continuous {Ft}-adapted process; θ is a right-continuous with
left-limits {Ft}-adapted process; q satisfies the following equation:

q(t) = q0 +

∫ t

0

g(q(s), θ(s))ds+ %w(t)(5.20)

and θ satisfies (5.7) with q replacing x there. Existence and unicity of solutions for
these equations are given by Theorem 6.2.3 in [2, p. 367], since it can easily be verified
that the Lipschitz and growth conditions of [2] are satisfied for this equation.

We now establish the associated martingale problem. Let µ denote a relaxed control.
We denote by Lµ the infinitesimal generator of the above switching diffusion, which is
given by (see, e.g., [10, 11]):

(Lµf)(s, ξ, i) = g(ξ, i)fx(ξ, i) +
%2

2
fxx(ξ, i) +

∑
j∈E

∫
U
f(ξ, j)λij(α)µs(dα),(5.21)

for (s, ξ, i) ∈ [0,∞)×R×E and function f in its domain D, given by D := C2
0(R×E).

It is straight forward to show that a switching diffusion (q, θ) defined above is the
solution of this martingale problem, using a similar argument to that in Remark 5.3.
Now we define the associated martingale problem.
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Definition 5.6. Suppose that (ζ, ϑ) is a stochastic process with sample paths that are
right-continuous with left limits. Let µ denote a relaxed control. The process (ζ, ϑ) is
said to solve the martingale problem for Lµ if there exists a filtration {Ft} such that
(ζ, ϑ) is Ft-adapted and the process defined by:

f(ζ(t), ϑ(t))− f(ζ(0), ϑ(0))−
∫ t

0

(Lµf)(s, ζ(s), ϑ(s))ds, t ≥ 0

is an {Ft}-martingale for each f ∈ D.

Let v denote a randomized Markovian control. Similarly to the previous section, if
µ is the relaxed control associated with v, we will denote the infinitesimal generator by
Lv. The above martingale problem for Lv has been shown to have an unique solution
recently in [41]. Also, notice that, for a control v satisfying the Assumption 4.1, an
analogous result to Lemma 5.4 is valid for the model of this section.

Now we are ready to present the main theorem of this section.

Theorem 5.7. Suppose that the initial condition for the n-th system (qn(0), θn(0))
converges weakly to (q0, θ0), a random variable with finite expectation taking values in
R×E. Let (qn, θn) be the stochastic process satisfying (3.16) and (4.1) for a randomized
Markovian control v satisfying the assumption on Lemma 5.4. Then (qn, θn) converges
in distribution to the controlled switching diffusion having initial condition (q0, θ0), drift

given by (5.4), diffusion coefficient % :=
√
λs(σ2

a + 1) and control v.

Proof. Since the drift term in (3.16) depends on qn, we begin by verifying the following
condition, which is usually known as the compact containment condition: for each
t > 0, ε > 0, there are K > 0 and n0 > 0 such that

P
(

sup
0≤s≤t

|qn(s)| > K

)
≤ ε.(5.22)

In order to show this, let τnK = inf{s ≥ 0 : |qn(s)| > K} for some constant K > 0.
We get the following by taking absolute absolute value in (3.16) with t replaced with
t ∧ τnk :

|qn(t ∧ τnK)| ≤ |qn(0)|+
∫ t∧τnK

0

λd max
i∈E
|bn(i)|+ λd|qn(s)|ds(5.23)

+ |ma,n(an(t ∧ τnK))|+ |m̃d,n(T̄ n(t ∧ τnK))|+ |ε̄n2 (t ∧ τnK)|.

First recall that |ε̄n2 (t∧τnK)| ≤ n−1/2λa,n∆a,n
An(t∧τnK)+1. Therefore, since {∆a,n

l } are identi-

cally distributed in l and by the fact that ∆a,n
An(t∧τnK)+1 is independent of F̃nt∧τnK , we have

that E [|ε̄n2 (t ∧ τnK)|] ≤ n−1/2. Now, notice that we have the following using Jensen’s
inequality:

E[|ma,n(an(t ∧ τnK))|] ≤ E
[
sup
s≤t
|ma,n(an(s))|

]
≤ E

[
sup
s≤t

(ma,n(an(s)))2

]1/2

.

It is straight forward to show that ma,n(an(·)) is an F̃nt martingale. Therefore, we have
by Doob’s inequality (e.g., Theorem 1.43 [18, p. 11]) that E

[
sups≤t (ma,n(an(s)))2] ≤
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4E
[
(ma,n(an(t)))2]. Using integration by parts for functions of bounded variation and

Wald’s Lemma (since An(t) is an {F n
l }-stopping time for each t ≥ 0, where F n

l :=

σ(∆a,n
k ; k ≤ l)), we have that: 4E

[
(ma,n(an(t)))2] ≤ 4

n
E [An(t)]σ2,n

s . By definition of

An, we know that
∑An(t)

l=1 λa,n∆a,n
l ≤ λa,nt, taking expectation and using Wald’s Lemma

again implies that E[An(t)] ≤ λa,n t. This gives the following estimate:

E[|ma,n(an(t ∧ τnK))|] ≤ 2
√
λs,ntσ2,n

s .

In addition, by properties of time-changed Poisson processes, m̃d,n(T̄ n(t ∧ τnK)) is an

F̃at martingale with quadratic variation given by T̄ n(t ∧ τnK). By (3.17), this implies
that:

E[|m̃d,n(T̄ n(t ∧ τnK))|] ≤ E
[(
m̃d,n(T̄ n(t ∧ τnK))

)2
]1/2

= E
[
T̄ n(t ∧ τnK))

]1/2
≤

√
λs,nt+

λd√
n

max
i∈E
|bn(i)|t+

λd√
n
Kt.

Let us define CK,n,t as follows:

CK,n,t := E[|qn(0)|] + λd max
i∈E
|bn(i)|t

+ 2
√
λs,ntσ2,n

s +

√
λs,nt+

λd√
n

max
i∈E
|bn(i)|t+

λd√
n
Kt.

Using (5.23), we have that

E [|qn(t ∧ τnK)|] ≤ CK,n,t +

∫ t

0

λdE [|qn(s ∧ τnK)|] ds

By Gronwall’s inequality (e.g. Proposition 6.1.4 of [2, p. 295]), we get: E [|qn(t ∧ τnK)|] ≤
CK,n,te

λdt. Since, E [|qn(t ∧ τnK)|] ≥ KP(τnK < t), we have that

P(τnK < t) = P
(

sup
s≤t
|qn(s)| > K

)
≤ CK,n,te

λdt

K
,(5.24)

which implies the compact containment condition (5.22), since the left-hand side of
(5.24) gets smaller when K or n increases.

Let us define d̃n(·) :=
∫ ·

0
gn(qn(s), θn(s))ds. Using the same arguments used in the

proof of Theorem 5.5, we conclude that {d̃n} is C-tight. In addition, the same argument
used in the proof of Theorem 5.5 can be used to show that {θn} is tight. The C-tightness

of {d̃n} implies that {T̄ n} converges in probability to a process taking values λs,nt, by
(3.17). This together with Lemma 3.3 implies that {(ma,n, m̃d,n, an, T̄ n)} is C-tight and
that {w̃n} is C-tight, since the composition map is continuous. We also have that {ε̄n2}
converges in probability to the zero process, by the same argument used in the proof
of Theorem 5.5. Therefore, we have that Ψ̃n = {(qn, θn)} is tight.

Now we characterize the limit of any weak-sense limit of a converging subsequence
of {(qn, θn)} as the solution to the martingale problem for Lµ, for some relaxed control
µ, where the infinitesimal operator is given by (5.21). For this, suppose that (q, θ) is a
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weak-sense limit of a converging subsequence of {(qn, θn)} and let {F̃t} be its natural
filtration. Let p be an integer and {tk}pk=1 a set of real numbers such that 0 ≤ tk ≤ t
for each k = 1, . . . , p. Let hk : R × E → R be continuous and bounded functions, for
k = 1, . . . , p. In order to show that (q, θ) is a solution to the {F̃t}-martingale problem
for Lµ it is enough to show that it satisfies:

E

[[
f(q(t+ τ), θ(t+ τ))− f(q(t), θ(t))

] p∏
k=1

hk(q(tk), θ(tk))

]

= E

[∫ t+τ

t

(Lµf)(s, q(s), θ(s))ds

p∏
k=1

hk(q(tk), θ(tk))

]
,

fore each t, τ ≥ 0, f ∈ D, p, {tk}pk=1 and continuous and bounded functions {hk}pk=1.
Clearly, the remainder of the proof follows analogously to the proof of Theorem 5.7
and therefore the details are omitted.

�

5.3. Application of the Heavy Traffic Approximations. Now that we have de-
rived the switching diffusion limits for the two queuing models, we show how they can
be used to approximate these queuing systems. In practice there is one physical sys-
tem that we want to approximate with a fixed number of servers, say n̆. Suppose that
this physical system under consideration has arrival rate λ̆a with squared coefficient
of variation σ̆2

a, where we define λ̆s := λ̆a/n̆. These correspond to λa,n̆, σ2,n̆
a = σ2,n̆

s ,
and λs,n̆ for n given by n̆ in the notation of Section 3. Let o

n̆ denote the number of
servers that remain always in the “on” state and let f̆(i) := f

n̆(i) denote the fraction
of active servers when the state is i ∈ E. Let, in addition, ∆̄d denote the average
service time and σ2

d denote the square coefficient of variation for the service time dis-
tribution for this physical system. For the controlled pure jump process, representing
the state of the reserve machines, let λ̆ij(α) denote the actual transitions rates for this
system when going from state i to j, for i 6= j, when the control is α ∈ U and let
λ̆ii(α) := −

∑
j∈E\{i} λ̆ij(α).

In order to use the switching diffusion limit for the model I, given by Theorem 5.5,
let b̆ : E → R be given by b̆ := bn̆, where bn is defined in (3.2). We approximate the

workload in the physical system at time t, X(t), by the process X̆(t) :=
√
n̆x̆(t), where

x̆ is given by:

x̆(t) = x̆0 +

∫ t

0

b̆(θ̆(s))ds+

√
λ̆s(∆̄d)2(σ̆2

a + σ2
d)w̆(t) + r̆(t),(5.25)

= x̆0 +
∆̄d

√
n̆

∫ t

0

λ̆a − λdn̆f̆(θ̆(s))ds+
∆̄d

√
n̆

√
λ̆a(σ̆2

a + σ2
d)w̆(t) + r̆(t), t ≥ 0,

where x̆0 := X(0)/n̆, X(0) is the initial workload in the system, w̆ denotes a standard

Brownian motion, r̆ the reflection process and θ̆ the controlled pure jump process,
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which satisfies:

P
(
θ̆(t+ δ) = j|θ̆(t) = i, F̆t

)
=

∫
U
λ̆ij(α)v(x̆(t), i)(dα)δ + o(δ), t ≥ 0,(5.26)

for δ > 0 and relaxed control v, where F̆t := σ{x̆(s), θ̆(s); s ≤ t} for each t ≥ 0.

An approximation for model II can be constructed as follows. Let λ̆a, σ̆2
a, and b̆

be the parameters of the physical system as described in the previous paragraph. In
addition, let q̆ be a stochastic process that is a solution to

q̆(t) = q̆0 +

∫ t

0

λd
(
b̆(θ̆(s)) ∨ −q̆(s)

)
ds+

√
λ̆s (σ̆2

a + 1)w̆(t), t ≥ 0,(5.27)

where q̆0 := n̆−1/2(Q(0) − n̆ρ̆), ρ̆ := λ̆a∆̄d/n̆, Q(0) is the initial number of customers

in the system, w̆ denotes a standard Brownian motion and θ̆ denotes the controlled
pure jump process, which satisfies expression (5.26) with q̆ in place of x̆ and F̆ ′t :=

σ{q̆(s), θ̆(s); s ≤ t} in place of F̆t. Notice that (q̆, θ̆) is the limit switching diffusion of
Theorem 5.7 with the physical system’s data.

We approximate the number of customers in the system at time t by the process
Q̆ :=

√
n̆˘̄q, with ˘̄q given by ˘̄q(t) = q̆(t) +

√
n̆ρ̆, t ≥ 0. The expression (5.27) can be

simplified and written in terms of (˘̄q, θ̆), as follows:

˘̄q(t) = ˘̄q0 +
1√
n̆

∫ t

0

λ̆a − λd
[
n̆f̆(θ̆(s)) ∧

√
n̆˘̄q(s)

]
ds(5.28)

+
1√
n̆

√
λ̆a (σ̆2

a + 1)w̆(t) + r̆(t), t ≥ 0

where ˘̄q0 := n̆−1/2Q(0) and we introduced here a reflection term r̆(t) in order to prevent

the approximation Q̆ from taking negative values. The reflection process r̆(t) satisfies
r̆(0) = 0, it is non-decreasing and increases only at time t such that ˘̄q(t) = 0.

An interesting feature to be pointed out here is the similarity between the scaled
approximation for the two models, given by (5.25) and (5.28). Since the service process
for model I is parallelized, in the sense that the processing stations work together to
complete the pending jobs, the term λdn̆f̆(θ̆(t)) comes out in its drift function. This
term can be understood as the system processing rate at time t. For model II, the
analogous term is given by λd(n̆f̆(θ̆(t)) ∧

√
n̆˘̄q(t)), which depends on the number of

customers
√
n̆˘̄q(t), since the servers are not parallelized and do not work together on

pending jobs. In addition, since x̆ represents the scaled workload, its expression is
multiplied by the average service time ∆̄d. This is not present in the expression of ˘̄q,
since it represents the scaled number of clients.

6. The Control Problem and a Numerical Method

In this section, we consider the control problem and present the numerical approach
used to solve it. For simplicity, let (z, θ) represent either the approximation (x̆, θ̆) for

model I, given by (5.25), or the approximation (˘̄q, θ̆) for model II, given by (5.28). Un-
der control v, we assume that (z, θ) satisfies the following regime-switching stochastic
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differential equation with reflection:{
dz(t) = c(z(t), θ(t))dt+ σdw(t) + dr(t),

P (θ(t+ δ) = j| θ(t) = i,Gt) =
∫
U λ̆ij(α)v(z(t), i)(dα)δ + o(δ)

(6.1)

where c (resp., σ) represents either the drift term (resp., diffusion coefficient) in (5.25)

or in (5.28) and Gt represents either F̆t = σ{x̆(s), θ̆(s); s ≤ t} or ˘̄F ′t = σ{˘̄q(s), θ̆(s); s ≤
t}.

Let us define the running cost function K : R+×E → R. For example, this function
can represent the energy consumption rate, which depends on the number of machines
turned on; it can represent a measure of performance, such as the number of pending
tasks; or it can represent a combination of both. Assume that K is either continuous
in its first argument or bounded. We consider the following ergodic control problem:
determine a control policy v, which minimizes the cost:

γ(z0, i0, v) := lim sup
T

1

T

∫ t

0

Ev(z0,i0) [K(z(s), θ(s))] ds,(6.2)

where (z0, i0) is the initial condition of the system and the superscript v over the
expectation was added in order to emphasize that (z, θ) is controlled by v.

In general, closed-form analytical solutions for such control problems are not known.
In addition, as far as the authors are aware, there is not any available theory which
allows to get an analytical solution, specially in this case where the process is con-
trolled by the pure jump process. Therefore, our approach here is to find a solution
numerically. Since there are no numerical methods currently available for this specific
class of control problems, we propose an approach based on the Markov chain ap-
proximation method (MCAM), where the original problem is set as a Markov decision
process (MDP) after a proper discretization. This MDP will be constructed using finite
difference approximations on the differential operators of the dynamic programming
equation (DPE) for the original control problem.

In order to present the DPE for this control problem, let us denote by D+ the set of
functions f of C2(R+ × E) such that fx(0, i) ≥ 0 for each i ∈ E. For each α ∈ U , let
us define Lα to be the following operator on D+:

Lαf(ξ, i) = c(ξ, i)fx(ξ, i) +
σ2

2
fxx(ξ, i) +

∑
j∈E

λ̆ij(α)f(ξ, i).

The DPE associated with the ergodic control problem with cost (6.2) is given by:{
infα∈U {LαV (ξ, i)− γ +K(ξ, i)} = 0, for ξ > 0

Vx(0, i) = 0
(6.3)

for i ∈ E, V ∈ D+, and constant γ (see for instance [25, p. 65]).
We will not attempt to prove convergence of the numerical method proposed here,

however the theorem below provides a motivation for the approach. It states that
if a randomized Markovian control vε satisfies (6.3) approximately for some bounded
function V ε ∈ D+ and constant γε (i.e., with errors within an interval of length ε),
then vε is an ε-optimum control. Therefore, if a solution is found for a discrete version
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of this dynamic programming equation and this discrete solution can be smoothly
interpolated, then it will be a good approximation to the continuous problem.

Theorem 6.1. Let ε > 0. Suppose that there are V ε ∈ D+ bounded and scalar γε

satisfying (6.3) “approximately,” in the sense that:

dε(ξ, i) := inf
α∈U
{LαV ε(ξ, i)− γε +K(ξ, i)}(6.4)

satisfies |dε(ξ, i)| < ε/2, for all ξ > 0 and i ∈ E, and V ε
x (0, i) = 0 for all i ∈ E. Let vε

be a randomized Markovian control such that∫
U
LαV ε(ξ, i)vε(ξ, i)(dα)− γε +K(ξ, i) = dε(ξ, i),(6.5)

for all ξ > 0 and i ∈ E. Then vε is an ε-optimum solution for the ergodic control
problem with cost given by (6.2).

Proof. See the Appendix A. �

In order to construct the approximating Markov chain, the state space for the con-
tinuous component of the switching diffusion is discretized. For h > 0, let us denote
this discretized state space by Sh := {0, h, 2h, 3h, . . .}. Now, difference approximations
are used for the differential operators in Lα. Let V ∈ D+, the forward and backward
finite difference approximations for Vx are given by

D+
h V (ξ, i) :=

V (ξ + h, i)− V (ξ, i)

h
, D−h V (ξ, i) :=

V (ξ, i)− V (ξ − h, i)
h

,

respectively, for (ξ, i) ∈ Sh × E, where we use V (ξ, i) ≡ V (0, i) for ξ < 0. It is well
known that Vx(ξ, i) = D±h V (ξ, i) +O(h) for all ξ and i, where O(h) is a term such that
O(h)→ 0 as h ↓ 0. Using the central difference approximation for Vxx, we define

D2
hV (ξ, i) :=

V (ξ + h, i)− 2V (ξ, i) + V (ξ − h, i)
h2

for (ξ, i) ∈ Sh × E,

which satisfies Vxx(ξ, i) = D2
hV (ξ, i) + O(h). Again, we set V (ξ, i) ≡ V (0, i) for ξ < 0.

Therefore, for α ∈ U , we define LαhV (ξ, i) to be the finite difference approximation for
LαV (ξ, i) as follows: LαV (ξ, i) = LαhV (ξ, i) +O(h), where

LαhV (ξ, i) := c+(ξ, i)D+
h V (ξ, i) + c−(ξ, i)D−h V (ξ, i) +

σ2

2
D2
hV (ξ, i) +

∑
j∈E

λ̆ij(α)V (ξ, j),

c+(ξ, i) := c(ξ, i) ∨ 0 and c−(ξ, i) := c(ξ, i) ∧ 0. This combination of the forward and
backward difference approximation for Vx is used in order to have positive transition
probabilities for the approximating Markov chain (see [25, chapter 5] for more details).

With this, we can define the following discrete DPE, for a function Vh : Sh×E → R
and scalar γh:{

infα∈U {LαhVh(ξ, i)− γh +K(ξ, i)} = 0 for (ξ, i) ∈ Sh × E
D−h Vh(0, i) = 0.

(6.6)
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By grouping the terms involving Vh(ξ, i), Vh(ξ + h, i) and Vh(ξ − h, i) together for the
first equation in (6.6), we have

Vh(ξ, i) = inf
α∈U

{
∆thK(ξ, i) + Vh(ξ, i)

[
1− Mh(ξ, i, α)

M̄h

]
+ Vh(ξ + h, i)

[
σ2/2 + hc+(ξ, i)

M̄h

]

+ Vh(ξ − h, i)
[
σ2/2− hc−(ξ, i)

M̄h

]
+

∑
j∈E\{i}

λ̆ij(α)∆thVh(ξ, j)− γ̄h

}
,(6.7)

where γ̄h := ∆thγh, M
h(ξ, i, α) := |c(ξ, i)|h+σ2− λ̆ii(α)h2, M̄h := maxξ,i,αM

h(ξ, i, α),
and ∆th := h2/M̄h. Notice that the condition D−h V

h(0, i) = 0 of (6.6) implies that
Vh(−h, i) = Vh(0, i) and, hence, we can replace Vh(−h, i) by Vh(0, i) in (6.7) when
ξ = 0.

Comparing (6.7) with the dynamic programming equation for a Markov decision pro-
cess with average reward criterion (e.g., [34, p. 443]) suggests the following transition
probabilities for α ∈ U :

ph((ξ, i), (ξ, i)|α) := 1− Mh(ξ, i, α)

M̄h
for ξ > 0, i ∈ E

ph((ξ, i), (ξ ± h, i)|α) :=
σ2/2± hc±(ξ, i)

M̄h
, for ξ > 0, i ∈ E

ph((ξ, i), (ξ, j)|α) := λ̆ij(α)∆th, for ξ ≥ 0, i, j ∈ E, i 6= j.

(6.8)

For ξ = 0 and i = j, we have the following transition probability:

ph((0, i), (0, i)|α) := 1− Mh(0, i, α)

M̄h
+
σ2/2− hc−(0, i)

M̄h
for ξ = 0, i ∈ E.(6.9)

The transition probability from (ξ, i) to any other state that is not covered by either
(6.8) or (6.9) is defined to be zero. With these transition probabilities, we can find a
numerical solution to (6.7) by using, for instance, the value iteration procedure or a
linear programming formulation.

Remark 6.2 (Finite State Space for Numerical Solution). Since numerical methods
require finite state space, an upper bound for the set Sh must be introduced. The idea
is to let B (a multiple of h) be the largest value that x can take. Since we desire to
work with ergodic queues, we can choose B to be large enough not to interfere with the
process. Let SBh := {0, h, 2h, 3h, . . . , B} and redefine the transition probability from
state (B, i) to (B, i) in a similar fashion to what is done in equation (6.9),

ph((B, i), (B, i)|α) := 1− Mh(B, i, α)

M̄h
+
σ2/2 + hc+(B, i)

M̄h
,(6.10)

for ξ = B, i ∈ E. Notice that this is analogous to having a reflecting boundary at ξ = B.
That is, this probability will appear if we add the condition that D+

h Vh(B, i) = 0 to
(6.6). Clearly, we also need to redefine the transition probabilities involving states
(ξ, i) with ξ > B to be zero.
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Let us denote by ζh := {ζhk }∞k=0 a discrete time Markov chain taking values on
{0, h, . . . , B} ×E and whose transition matrices are given by ph((x, i), (y, j)|α), which
are defined by (6.8), (6.9), and (6.10). It is desirable that this Markov chain is locally
consistent with the reflected switching diffusion, which is solution of (6.1). Although,
we are unaware of any work which deals specifically with the switching diffusion con-
sidered here, which is reflected and has switching rates depending on the control, it is
known (see [25]) that for similar jump diffusions and under mild additional assump-
tions, local consistency is a sufficient condition for the weak convergence of appropri-
ately constructed continuous time interpolation of these approximating Markov chain
to the jump diffusions. Loosely speaking, this condition implies that the local mean
and covariance of the Markov chain approximation matches that of the jump diffu-
sion. We will verify the local consistency conditions presented by [35, 42] for switching
diffusions (although we had to adapt slightly the condition presented there in order
to cover the switching rate dependency on the control, which is present in the system
considered here) in addition to the boundary local consistency, for reflected diffusions,
which is given by (7.3a)-(7.3c) of [25, p. 137].

In order to present the theorem below, let us introduce the following notation. Let
Eα,h(x,i) and Pα,h(x,i) denote the conditional expectation and probability distribution, re-

spectively, given that ζhk = (x, i) and the control is set to α ∈ U at time k. Notice
that we omit k from the notation of the expectation and the probability since ζh is
time-homogeneous. In addition, let us define ∆ζh1,k := (ζhk+1)1 − (ζhk )1, where (ζhk+1)l
denotes l-th component of ζhk , l ∈ {1, 2}.

Theorem 6.3. The discrete time Markov chain ζh satisfies the following local consis-
tency conditions:

sup
k,ω
|∆ζh1,k| → 0 as h→ 0;(6.11)

for 0 < x < B, i, j ∈ E, and i 6= j,

Eα,h(x,i)

[
∆ζh1,k

]
= c(x, i)∆th + o(∆th),(6.12)

Eα,h(x,i)

[(
∆ζh1,k − Eα,h(x,i)

[
∆ζh1,k

])2
]

= σ2∆th + o(∆th),(6.13)

Pα,h(x,i)

{
(ζhk+1)2 = j

}
= ∆thλ̆ij(α) + o(∆th),(6.14)

Pα,h(x,i)

{
(ζhk+1)2 = i

}
= 1 + λ̆ii(α)∆th + o(∆th);(6.15)

for x ∈ {0, B}, (6.14) and (6.15) are satisfied and

Eα,h(0,i)

[
∆ζh1,k

]
= c1h+ o(h),(6.16)

Eα,h(B,i)

[
∆ζh1,k

]
= −c1h+ o(h),(6.17)

Eα,h(x,i)

[(
∆ζh1,k − Eα,h(x,i)

[
∆ζh1,k

])2
]

= o(h),(6.18)

where c1 > 0 and c2 > 0 are constants; and there are ε1 > 0 and ε2 > 0 such that
ph((0, i), (h, i)|α) ≥ ε1 and ph((B, i), (B − h, i)|α) ≥ ε2.
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Proof. See the Appendix A. �

6.1. A Numerical Approach to a Control Problem with Restriction. In ad-
dition to the control problem presented previously, we will also consider the problem
of minimizing (6.2) while satisfying a cost constraint. Formally, the idea is to find a
randomized Markovian control v : R+×E → P such that the following average cost is
minimized:

γ(z0, i0, v) := lim sup
T

1

T

∫ T

0

Ev(z0,i0) [K(z(s), θ(s))] ds,(6.19)

where (z0, i0) is the initial condition, while satisfying, for some constant W , the con-
straint:

lim sup
T

1

T

∫ T

0

Ev(z0,i0) [R(z(s), θ(s))] ds ≤ W,(6.20)

where R : R+ × E → R is another running cost function. This control problem
is motivated by the idea that we would like to minimize power consumption while
maintaining a reasonable quality of service. For instance, R might be used to calculate
a performance measure of the system, such as the waiting time.

The approach taken here for this problem is numerical. Having defined the approx-
imating Markov chain in the previous section, we now define a constrained Markov
decision process as follows. Let ζh := {ζhn}∞n=1 be a controlled Markov chain taking val-
ues in {0, h, . . . , B}×E with transition probabilities given by ph((x, i), (y, j)|α), which
is defined by (6.8), (6.9) and (6.10). Then the original control problem is approximated
by the following problem: find a control policy vh which minimizes the cost:

γ(ζ0, v
h) = lim supN

1
N
Evhζ0

[∑N
n=0K(ζhn)

]
s.t.: lim supN

1
N
Evhζ0

[∑N
n=0R(ζhn)

]
≤ W,

where ζ0 is the initial condition of the system. This discretized problem can be solved
via a linear programming formulation [1, 17].

7. Numerical Experiments

In this section, we consider some numerical experiments that illustrate the switching
diffusion approximations proposed here. These experiments are divided in two parts.
First we consider an experiment involving the queuing model II in Section 7.1. The
approach in this case is to minimize a combined cost, which penalizes energy consump-
tion (by a linear function of the number of machines turned on) and total number of
pending tasks in the system. The setup is the same as the one proposed in [30] and
the resulting optimal control obtained by the switching diffusion approximation and
numerical methods proposed here is compared with the strategy developed in [30]. We
then consider an experiment involving queuing model I in Section 7.2. This time, we
consider an optimal control problem with restriction, where the objective is to minimize
energy consumption, while satisfying a maximal average workload requirement.
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In order to validate the results, event-driven simulations of these parallel processing
system were implemented. In these simulations, the inter-arrival time distributions of
the arriving jobs can be either hyper-exponential or exponential. For queuing model I,
which considers systems where pending jobs are shared among the processing stations,
we implemented the following job-splitting scheme: each job that enters the system is
split into ŏ tasks, where ŏ is the number of machines that are always turned on for
the system in consideration. These split tasks wait in queue and can be served by any
available server. Each task has an exponential service time distribution with mean
∆̄d/ŏ. This implies that the amount of work brought into the system by the l-th job,
which is given by ∆d

l in our queuing model, is Erlang distributed with mean ∆̄d and
squared coefficient of variation given by σ2

d = 1/ŏ. This type of service parallelization
is found in index servers of large web search engines [5]. Since the system modeled
by queuing model II does not implement service parallelization, the simulation for this
system considers that jobs are not split and are served in order of arrival by the first
server that becomes available. For the simulation of model II, the processing times of
the arriving jobs are exponentially distributed.

In the simulation of both systems (for model I and II), when a signal to shut down is
sent by the controller, the system shuts down the first r stations that become available.
The stations take an exponential time to turn on and off with rates λon and λoff ,
respectively.

7.1. Combining Conflicting Objectives. In this section, we consider a control
problem involving the queuing model II. In order to have a basis of comparison for
the models and numerical methods proposed here, we consider the same scenario pre-
sented by Mitrani in [30] and we compare the controls obtained via the numerical
methods of the previous section with the strategy proposed by Mitrani in [30]. In
[30], the control is found by a carefully designed heuristics for a controlled M/M/n
queue (which only considers systems with inter-arrival times that are exponentially dis-
tributed). Following the scenario presented by Mitrani, we consider that the state of
the reserve machines are represented by the state space E = {0, 1, 3}, where the state
0 represents that the reserve machines are off, 1 represents the state where the reserve
machines are turning on, and 2 represents the state where they are active. There is
no state representing that the reserve machines are turning off, they are assumed to
shutdown immediately when a signal is sent by the controller.

The control problem considered here, which is the same considered by Mitrani [30], is
that of finding an optimal policy that minimizes a cost that penalizes a weighted average
of the number of stations consuming power and the number of pending tasks of the
system in equilibrium. Using the notation and the switching diffusion approximation
presented here, the ergodic cost is given by

γ(x0, i0, v) = lim sup
T→∞

1

T
Ev(x0,i0)

[∫ T

0

c1Q̆(s) + c2N(θ̆(s))ds

]
,

for a system with initial condition (x0, i0) ∈ [0,∞)×E, under the control v, and with

n̆ total processing stations, where Q̆(t) :=
√
n̆˘̄q(t), with ˘̄q satisfying (5.28), represents

the number of customers in the system by time t, and N(θ̆(t)) represents the number
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of servers consuming power at time t, where N is given by N(i) = o
n̆ for i = 0 and

N(i) = n̆ for i ∈ {1, 2}.
In order to represent the control, we define U to be {0, 1}, where a control set to

α = 0 represents that the system should remain as it is and α = 1 indicates that the
system should change state. This idea is implemented in the transition rates of the
controlled pure jump process θ̆ as follows:

λ̆0 1(α) =

{
λc if α = 1
0 otherwise,

λ̆1 2(α) = λon, λ̆2 0(α) =

{
λc if α = 1
0 otherwise,

where λon is the rate in which the machines turn on and λc is interpreted as the rate
in which the control is implemented. Notice that λ̆1 2(α) does not change with α, that
is, the processing stations cannot be interrupted if they have initiated the start up
process.

The control problem defined above was solved numerically using the method pre-
sented in Section 6, where the approximating Markov chain ζhk for (˘̄q, θ̆) was defined
with transition probabilities given by (6.8), (6.9) and (6.10). The ergodic control prob-
lem for this approximating Markov chain was solved using the value iteration procedure
(e.g., [34, p. 472]). The optimal control solutions determined by the numerical method
for this problem in every scenario considered below operate in the following fashion:
an upper U and a lower D threshold bounds were found; if the queue length is above
U and the reserves are off, then the reserves are turned on; and if the queue length
is below D and the reserves are active, then they are turned off. In [30], the author
assumed the same form for the control, but the threshold values U and D were different
from the ones found here.

We consider two scenarios for the numerical experiments. For each one of these
scenarios, we set c1 = 1, c2 = 2, and the service time to be exponentially distributed
with rate λd = 1. For the first case, the inter-arrival times are exponentially distributed
with rate λ̆a (with squared coefficient of variation given by σ̆2

a = 1). Table 1 displays
the resulting upper U and lower D threshold found using the heavy traffic approach
proposed here the upper and lower thresholds found by the heuristic proposed in [30]
and the associated ergodic cost value. This ergodic cost value was computed by the
closed form expression presented by [30] for a control based on these upper and lower

thresholds. The table also shows the value for the rate λ̆a used as well as the number
of processing stations n̆ and the number of reserve stations r̆ that were used for each
example considered. Notice that the ergodic cost for the control using the approach
proposed here is lower than the determined by the heuristic approach for every case.

For the second case, we suppose that the inter-arrival times are hyper-exponentially
distributed. The results for this case are displayed by Table 2 for different values of
arrival rate λ̆a, squared coefficient of variation σ̆2

a, number of processing stations n̆
and number of reserve stations r̆. The resulting upper and lower thresholds values for
both approaches are also displayed. This time, the ergodic cost displayed in the table
was calculated by the event-driven queuing simulation of this system implementing
the control with the given threshold values, since no closed form for such a system is
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Table 1. Table shows the results for the ergodic cost for the first sce-
nario, where the inter-arrival times are exponentially distributed, for the
control found by the approach proposed here (heavy-traffic) and the ap-
proach proposed by [30] (heuristics). Different values for the inter-arrival

rates λ̆a, number of processing stations n̆ and number of reserve stations
r̆ were used. U and D represent the upper and lower thresholds found
for the controls by the different approaches.

Method U D σ̆2
a λ̆a n̆ r̆ Ergodic Cost

heavy-Traffic 10 9 1 4 10 5 14.123313
heuristics 9 4 1 4 10 5 17.309647

heavy-Traffic 19 17 1 10 20 9 33.066862
heuristics 19 10 1 10 20 9 37.356842

Table 2. Table shows the results for the ergodic cost for the second sce-
nario, where the inter-arrival times are hiper-exponentially distributed,
for the control found by the approach proposed here (heavy-traffic) and
the approach proposed by [30] (heuristics). Different values for the inter-

arrival rates λ̆a, squared coefficient of variation of the inter-arrival times
σ̆2
a, number of processing stations n̆ and number of reserve stations r̆ were

used. U and D represent the upper and lower thresholds found for the
controls by the different approaches. The ergodic cost was calculated by
an event-driven queuing simulation that implements the controls. The
numbers following the symbol ± near the computed averages for the sim-
ulation are the 95% t confidence bounds.

Method U D σ̆2
a λ̆a n̆ r̆ Ergodic Cost (sim)

heavy-traffic 12 9 10 4 10 5 16.521 ± 0.004

heuristics 9 4 10 4 10 5 17.491 ± 0.004

heavy-traffic 21 17 10 10 20 9 37.230 ± 0.003

heuristics 19 10 10 10 20 9 39.020 ± 0.004

known. Again, notice that the ergodic cost for the control derived via the heavy traffic
approach proposed here is lower that that for the heuristics.

7.2. A Control Problem with Restriction. We now consider an optimal control
problem with restriction for the queuing model II, whose objective is to minimize
the number of stations turned on while attending a maximal workload requirement.
Similarly to the control problem of the previous section, we consider the following
set of control actions α ∈ U = {0, 1} where α = 1 indicates that the reserve stations
should change the state, and α = 0 indicates that it should remain in the current state.
However, this time we choose the following set of states E = {0, 1, 2, 3} for the pure

jump process θ̆, which models the state of the reserve machines. The state 0 represents
that the reserve machines are “off,” 1 represents the state where the reserve machines
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are “turning on,” 2 represents the state where the reserve machines are “powering off,”
and 3 means that the reserve machines are “on.” We use the following transition rates:

λ̆0 1(α) =

{
λc if α = 1
0 otherwise,

λ̆3 2(α) =

{
λc if α = 1
0 otherwise,

λ̆1 3(α) = λon, λ̆2 0(α) = λoff,

where λ̆1 3(α) and λ̆2 0(α) do not change with α, that is, the machines cannot be inter-
rupted in their process of turning on or off. The rate λc is interpreted as the rate in
which the control is implemented. For every test performed here, we set λon = λoff.

Consider a system with n̆ processing stations of which ŏ are always turned on. The
control problem considered here is the one discussed in Section 6.1 for the switching
diffusion approximation (x̆, θ̆) satisfying (5.25) with cost rates K and R, used in (6.19)
and (6.20), given by K(ξ, i) = n̆ if i ∈ {1, 2, 3} and ŏ if i = 0; and R(ξ, i) ≡ ξ.
Notice that K measures the number of processing stations consuming power at a given
time and R measures the scaled workload in the system. Let W := n̆−1/2W̃ denote
the constant associated with the restriction (6.20), where W̃ denotes the unscaled
maximum mean workload constraint constant.

The following data were used in numerical experiments: n̆ = 150, ŏ = 120, λd = 1,
σ2
d = 1/120, λ̆a = 110, σ̆2

a varying in the set {1, 10, 20}, λc = λ̆a, and λon = λoff

varying in the set {0.1, 1.0, 10}. Where the inter-arrival times are assumed to be hyper-
exponentially distributed and the service times are Erlang distributed. The values for
W̃ , the unscaled maximum mean workload constraint constant, are given by 3.0, 20, and
50 for the systems with σ̆2

a = 1, 10, and 20, respectively. Given the appropriate data for
the system, the transition probabilities for the approximating Markov chain, given by
(6.8), (6.9) and (6.10), were computed and the associated linear programming problem
was constructed. The linear program was solved using IBM ILOG CPLEX Optimizer,
and the values of B and h, used in the approximation, were chosen empirically in
order to improve the numerical results. The resulting control was implemented in the
computer simulation of the system.

Two types of resulting controls were observed. For the first kind, named here “type-
1,” an upper U and a lower D threshold were found. Similarly to what was discussed
in the previous section, the control operates in the following fashion: if the workload
is above U and the reserves are off, then the reserves are turned on. In addition, if the
workload is below D and the reserves are active, then they are turned off. The second
kind of control, named here “type-2”, was observed when the reserve machines took
longer times to turn on and off. In this case, an upper threshold U was found, but the
lower threshold D was zero. In this case, the reserve machines were turned off with
some (usually small) probability p.

The results of the simulated system with the optimal controls found by the numerical
method are given in Table 3, which reports the mean workload (MWL) obtained in the
queuing system simulation (Sim) and the mean number of servers consuming power
(MS). For the mean number of servers consuming power (MS), we display the value
which was obtained by the simulation and also by the linear programming solution
of the approximating Markov decision process. The mean workload associated with
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Table 3. The table shows the mean workload of the system (MWL)
and the average number of machines consuming power (MS). In this
latter case, it is shown the values measured by the simulation (Sim) and
the values obtained by the heavy traffic approximation (HT) (through
the linear programming solution). It is also shown the type of control
(CT) obtained as solution of the optimal control problem. The numbers
following the symbol ± near the computed averages for the simulation
are the 95% t confidence bounds.

σ̆2
a λon CT MWL (Sim) W̃ MS (Sim) MS (HT)

1.0
0.1 2 2.793 ±0.152

3.0
142.4 ±1.050 138.1

1.0 2 2.526 ±0.045 143.8 ±0.281 136.1
10 2 2.772 ±0.015 134.8 ±0.121 126.5

10
0.1 2 27.62 ±1.460

20
136.4 ±1.260 144.8

1.0 2 23.21 ±0.211 132.7 ±0.152 141.0
10 1 17.12 ±0.146 129.8 ±0.155 130.1

20
0.1 2 63.74 ±0.379

50
130.0 ±0.140 138.2

1.0 2 45.53 ±0.348 127.4 ±0.118 128.7
10 1 45.21 ±0.446 124.7 ±0.106 125.7

the linear programming solution is always at the upper bound value W , since it is
the limiting constraint for the control problem. From the results, we observe that the
values obtained via the linear programming solution are close to the ones observed
in the simulation. In addition, notice that the “type-1” controller was only obtained
when the reserve machines change rapidly from the active to inactive states (and vice-
versa) and the inter-arrival coefficient of variation is high. This leads us to believe
that the type-2 controller may be compensating periods of long queues by maintaining
the system operating with the reserves machines turned on for an unnecessarily longer
period of time. This behavior is observed when the variance in the arrival process is
small and the speed in which the servers change state is slow.

In order to verify whether there is gain in performing this task of turning machines
on and off for the different settings considered here, the following test is proposed. The
mean number of servers consuming power (MS) is obtained from the system operating
the optimal control calculated by the simulation. This number is then rounded to the
nearest integer and applied to a system with no control. That is, a system that always
uses the same number of active servers. We refer to this system as “no control with
optimal mean number of servers (NCO).” Table 4 contains the results of the simulation
of NCO and that of the system operating the optimal control (OC). We are interested
in comparing the mean and variance of the workload in these simulations. In order
to facilitate the reference to the results, some information from Table 3 is repeated in
Table 4.

Notice that, when the inter-arrival coefficient of variation σ̆2
a is small and the reserve

machines take a longer time to change state, it is better to operate the system with the
fixed optimal mean number of servers. That is, the mean workload and its standard
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Table 4. The table shows the data obtained with the simulation of a
system with no control using the optimal mean number of servers (NCO)
and the system operating the optimal control (OC). The values shown
are: the mean workload in the system (MWL), the standard deviation of
the workload (Std.), and the number of machines consuming power (MS)
for the NCO system. It is also shown the type of control (CT obtained)
as solution of the optimal control problem. The numbers following the
symbol ± near the computed averages for the simulation are the 95% t
confidence bounds.

σ̆2
a λon CT MWL (OC) Std. (OC) MWL (NCO) Std. (NCO) MS

1.0
0.1 2 2.793 ±0.152 3.490 ±0.200 2.024 ±0.017 2.089 ±0.026 142
1.0 2 2.526 ±0.045 3.229 ±0.083 1.912 ±0.023 1.945 ±0.025 144
10 2 2.772 ±0.015 2.612 ±0.022 2.500 ±0.028 2.547 ±0.034 135

10
0.1 2 27.62 ±1.460 38.86 ±0.874 16.75 ±0.090 19.81 ±0.200 136
1.0 2 23.21 ±0.211 25.39 ±0.254 19.53 ±0.294 22.84 ±0.488 133
10 1 17.12 ±0.146 16.63 ±0.138 23.03 ±0.237 26.07 ±0.346 130

20
0.1 2 63.74 ±0.379 74.79 ±0.533 45.11 ±0.261 51.94 ±0.378 130
1.0 2 45.53 ±0.348 44.41 ±0.342 52.38 ±0.766 59.75 ±0.980 127
10 1 45.21 ±0.446 41.97 ±0.420 62.91 ±1.170 69.63 ±1.640 125

deviation are lower for the uncontrolled system operating with the optimal mean num-
ber of machines. Notice also that those cases coincide with the cases where the type-2
controller was found to be optimal, except for the case where σ̆2

a = 20 and λon = 1.
However, the situation is different for the cases where the coefficient of variation is high
and the rates to turn machines on and off are fast enough (when the type-1 controller
is observed). In these cases, the mean workload and the standard deviation are lowest
for the system operating the optimal control.

8. Conclusion

In this paper, the problem of managing power consumption in large parallel systems
by turning some of the machines on and off was considered. The approach taken
here was to derive a switching diffusion approximation for this system and pose the
decision problem as a continuous time optimal stochastic control problem. Two models
were proposed, the first assumed general service and arrival time distributions under
an assumption of task parallelization and the second considered general arrival times
and exponentially distributed service times in a first-come first-served service regime
with multiple servers. We showed that these controlled system can be approximated
by controlled switching diffusions with jumping rates depending on the state of the
continuous component of the process (through its dependency on the control function).
In addition, a numerical scheme, based on the Markov chain approximation method,
was proposed in order to solve the optimal control problem. In order to validate
the approach, some numerical experiments where performed and compared with a
computer simulation.
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Appendix A. Proof of Some Auxiliary Results

In this appendix, we present the proof of some auxiliary results.

Proof of Lemma 3.3. Tightness of ma,n, md,n and m̃d,n follows from the criterion given
by Theorem 2.7(b) of [20, p. 10]. Asymptotic continuity follows from the fact that the
maximum of the jumps of mn on any finite time interval converges to zero in probability
by the uniform integrability assumptions (e.g. [9, p. 148]). Now let us consider the
second statement of the lemma. Define T n to be:

T n(t) := n−1

bntc∑
l=1

∆s,n
l = −∆̄s,nn−1/2ma,n(t) + ∆̄s,nn−1bntc

for each t ≥ 0. The process −∆̄s,nn−1/2ma,n converges in probability to the zero
process, by tightness of {ma,n}. This implies that T n converges in probability to the
process taking values ∆̄st. Let Jn be given by:

Jn(t) := inf {u ≥ 0 : T n(u) > t} = inf

u ≥ 0 :

bnuc∑
l=1

∆s,n
l > nt

 ,

using Theorem 7.2 of [39, p. 82], we have that this process converges weakly to the
process taking values λst. Now, since we have that supt≤T |Jn(t) − an(t)| ≤ n−1, for
any T > 0, the sequence {an} converges weakly to the process taking values λst, by
Theorem 3.1 of [6, p.27]. Since the limit is not random, the weak convergence implies
convergence in probability. �

Proof of Lemma 5.4. Let us first consider that Gd contains only one point of disconti-
nuity denoted by d. For ε > 0, let gεn ∈ C∞(R) be a non-decreasing real function with
the following properties as n → ∞: (i) gεn, g

ε′
n converge uniformly in R to continuous

functions gε, gε′, respectively; and (ii) gε′′n converges almost everywhere to a function
gε′′ which takes value 1

2ε
on Nε(d) := {x ∈ R : d − ε ≤ x ≤ d + ε} and 0 every-

where else (see the construction of such a function gεn in [8, p. 144]). For B > 0, let
ϕB ∈ C∞0 (R) be a real function with compact support whose value is 1 for |ξ| < B and
0 for |ξ| > B + 1. Let g̃εBn : R+ → R be given by g̃εBn(ξ, i) = gεn(ξ)ϕB(ξ) for each i ∈ E
and ξ ∈ R+. Since g̃εBn ∈ D+ and (x, θ) solves the submartingale problem for Lµ, we
have that:

E
[
g̃εBn(x(t), θ(t))− g̃εBn(x(0), θ(0))−

∫ t

0

(Lµg̃εBn)(s, x(s), θ(s))ds

]
≥ 0.

By letting B →∞ and then n→∞, we have

E
[
gε(x(t))− gε(x(0))−

∫ t

0

b(θ(s))gε′(x(s))− σ2

4ε
I[d−ε,d+ε](x(s))

−
∑
j∈E

∫
U
gε(x(s))λθ(s)j(α)µs(dα)ds

]
≥ 0.
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Let δ > 0, the inequality above implies that

4ε

δσ2
E

[
gε(x(t))− gε(x(0))−

∫ t

0

b(θ(s))gε′(x(s))−
∑
j∈E

∫
U
gε(x(s))λθ(s)j(α)µs(dα)ds

]

≥ 1

δ
E
[∫ t

0

I[d−ε,d+ε](x(s))ds

]
≥ P

(∫ t

0

I[d−ε,d+ε](x(s))ds ≥ δ

)
,

where we used Markov’s inequality in the last line. Letting ε → 0 gives the result,
since gε(ξ), gε′(ξ) are bounded in ε. Clearly, we can consider the case where the set Gd

has a finite number of discontinuity points by defining a function gεn for each point d
in Gd. �

Proof of Theorem 6.1. Let (z, θ) be the solution to (6.1) with control vε. Then, using
Itô’s formula (e.g., Theorem 4.57 [18, p. 57]), the fact that the diffusion spends zero
amount of time at ξ = 0 (w.r.t Lebesgue’s measure) and the fact that V ε

x (0, i) = 0
together with the property (5.8) of the reflection term, we have that:

Evε(z0,i0) [V ε(z(t), θ(t))]− V ε(z0, i0)(A.1)

= Evε(z0,i0)

[∫ t

0

∫
U
LαV ε(z(s), θ(s))vε(z(s), θ(s))(dα)ds

]
≤ Evε(z0,i0)

[∫ t

0

ε

2
+ γε −K(z(s), θ(s))ds

]
,

where we used (6.5) and the fact that dε(z(s), θ(s)) < ε/2. Dividing both sides by t
and taking the limit, we have:

γε +
ε

2
≥ lim sup

t

1

t

∫ t

0

Evε(z0,i0) [K(z(s), θ(s))] ds =: γ(z0, i0, v
ε).(A.2)

Now let ṽ denote a randomized Markovian control with associated switching diffusion
given by (z̃, θ̃), satisfying (6.1) for the control ṽ. Then, by the minimization in (6.4)
and the fact that d(ξ, i) ≥ −ε/2, we have that∫

U
LαV ε(z̃(s), θ̃(s))ṽ(z̃(s), θ̃(s))(dα)− γε +K(z̃(s), θ̃(s)) ≥ − ε

2

at times s ≥ 0 such that z̃(s) > 0. Then, repeating the steps used to derive the first
equality in (A.1), we have that

Eṽ(z0,i0)

[
V ε(z̃(t), θ̃(t))

]
− V ε(z0, i0) = Eṽ(z0,i0)

[∫ t

0

∫
U
LαV ε(z̃(s), θ̃(s))vε(z̃(s), θ̃(s))(dα)ds

]
≥ Eṽ(z0,i0)

[∫ t

0

− ε
2

+ γε −K(z̃(s), θ̃(s))ds

]
.

Dividing both sides by t and taking the limit, we have

γε − ε

2
≤ lim sup

t

1

t

∫ t

0

Eṽ(z0,i0)

[
K(z̃(s), θ̃(s))

]
ds =: γ(z0, i0, ṽ).
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Therefore, the above inequality implies that γ(z0, i0, v
ε) − ε ≤ γ(z0, i0, ṽ), which con-

cludes the proof. �

Proof of Theorem 6.3. First notice that |∆ζh1,k| ≤ h by definition of the Markov chain
and, therefore, (6.11) is satisfied. Let us now consider 0 < x < B. It is straight forward
to verify condition (6.12). In fact, we have that

Eα,h(x,i)

[
∆ζh1,k

]
=
h2(c+(x, i) + c−(x, i))

M̄h
= c(x, i)∆th,

where we used the fact that c+(x, i) + c−(x, i) = c(x, i) and that ∆th = h2/M̄h. In
addition, by the fact that c+(x, i)− c−(x, i) = |c(x, i)|, we can verify (6.13) by noticing
that

Eα,h(x,i)

[
(∆ζh1,k)

2
]

=
h2σ2

M̄h
+
h3|c(x, i)|
M̄h

= σ2∆th + o(∆th),

and that
(
Eα,h(x,i)

[
∆ζh1,k

])2

= o(∆th). Now, for conditions (6.14) and (6.15), we have

Pα,h(x,i)

{
(ζhk+1)2 = j

}
= ph((x, i), (x, j)|α) = λ̆ij(α)∆th and

Pα,h(x,i)

{
(ζhk+1)2 = i

}
=

∑
y∈Sh(x)

ph((x, i), (y, i)|α) = 1 + λ̆ii(α)∆th.

with Sh(x) := {x− h, x, x+ h}. The same holds for x ∈ {0, B} by (6.9) and (6.10).
Now, let x = 0, then we can verify (6.16) by noticing that

Eα,h(0,i)

[
∆ζh1,k

]
= ph((0, i), (h, i)|α)h = h

1

2
+ h

(
σ2/2 + hc+(0, i)

M̄h
− 1

2

)
.(A.3)

and by the fact that the term (σ2/2 +hc+(0, i))/M̄h converges to 1/2 as h→ 0, by the

definition of M̄h. Now Eα,h(0,i)

[
∆ζh1,k

]
= ph((0, i), (h, i)|α)h2 and it will satisfy (6.18) for

x = 0 by (A.3). By analogous arguments, we can verify (6.17) and (6.18) for x = B.
Also, by the preceeding discussion, it is straight forward to verify that there are ε1 > 0
and ε2 > 0 such that ph((0, i), (h, i)|α) ≥ ε1 and ph((B, i), (B − h, i)|α) ≥ ε2. �
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