**Accepted and Published Papers**

**1. S. Nardulli, The isoperimetric
profile of a smooth Riemannian manifold for small volumes.
**

Ann. Glob.
Anal. Geom. Volume 36, Number 2 / September, 2009: 111-131.

**2. R. Grimaldi, S.
Nardulli, P. Pansu, Semianalyticity of isoperimetric profiles. **
**Differ. Geom. Appl. 27, No. 3, 393-398 (2009).**

**3. R. Grimaldi, S. Nardulli, P. Pansu, Differentiability properties of the isoperimetric
profile and topology of analytic Riemannian manifolds. **

C. R., Math.,
Acad. Sci. Paris 347, No. 5-6, 293-297 (2009).

**4. S. Nardulli, The isoperimetric profile of a non-compact Riemannian manifold for small volumes.
**

Calc. Var. Part. Diff. Eq., v. 49, p. 173-195, 2014.

**5. S. Nardulli, Generalized Existence Results For The Isoperimetric Problem in Riemannian Manifolds.
**

SUPPLEMENTO AL BOLLETTINO DI MATEMATICA PURA E APPLICATA. Convegno
Internazionale di Geometria in Onore del 60° Compleanno della Prof.ssa Renata Grimaldi (Palermo, 15-16 Giugno 2010)

**6. S. Nardulli, Generalized existence of isoperimetric regions in non-compact Riemannian manifolds and applications to the isoperimetric profile. **
**The Asian Journal of Mathematics, v. 18, p. 1-28, 2014.**

**7. F. Russo, S. Nardulli, Two bounds on the noncommuting graph. Open Mathematics, v. 13, n. 1, 2015.**

**8. A. Mondino, S. Nardulli, Existence of isoperimetric regions in non-compact Riemannian manifolds under Ricci or scalar curvature conditions.
**
**Comm. Anal. Geom. , v. 24, p. 115-138, 2016.**

**9. A. Muñoz Flores, S. Nardulli, Local Hölder continuity of the isoperimetric profile in
complete noncompact Riemannian manifolds with bounded geometry.**
**Geom. Ded. Volume 201, Issue 1, pp 1-12, 2019**

**10. S. Nardulli, P. Pansu, A discontinuous isoperimetric profile for a complete Riemannian manifold. Accepted 2016.**

Ann. Sc. Norm. Sup. Pisa PP. 537-549 | Vol. XVIII, issue 2, 2018.

**11. S. Nardulli, Regularity Property of Solutions of the Isoperimetric Problem Close to Smooth Manifolds. ****ArXiv**,

Bull. Braz. Math. Soc., New Series
June 2018, Volume 49, Issue 2, pp 199-260.

**12. A. E. Muñoz Flores, S. Nardulli,
The isoperimetric problem in a $C^0$ asymptotically Schwartzchild manifold with a finite number of ends.
****Comm. in Anal. and Geom., Vol. 28, Number 7, Pages: 1577-1601, 2020.**

**13. S. Nardulli, Luis Eduardo Osorio Acevedo, Sharp isoperimetric inequalities for small volumes in complete noncompact Riemannian manifolds of bounded geometry involving the scalar curvature.
** ** I.M.R.N. Volume 2020, Issue 15, August 2020, Pages 4667-4720.**

**14. V. Benci, S. Nardulli, P. Piccione, Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint. **

Calc. Var. and PDE's, 59, Article number: 64 (2020).

**15. A. E. Muñoz Flores, S. Nardulli,
Generalized compactness for finite perimeter sets and applications to the isoperimetric problem.**

Journal of Dynamical and Control Systems, 2020.

**16. S. Nardulli, F. Russo, On the Hamilton's isoperimetric ratio in complete Riemannian manifolds of finite volume.**

Journal of Functional Analysis, Volume 280, Issue 4, 2021.**
**

**17. V. Benci, S. Nardulli, L. E. Osorio Acevedo, P. Piccione, Lusternik-Schnirelman and Morse theory for the Van Der Waals-Cahn-Hilliard equation with volume constraint.**
Accepted in Nonlinear Analysis, 2022

**18. C. De Lellis, S. Nardulli, S. Steinbruechel,
Uniqueness of boundary tangent cones for 2-dimensional area-minimizing currents.**
Accepted in Nonlinear Analysis, 2022

**19. G. Antonelli, S. Nardulli, M. Pozzetta, The isoperimetric problem via direct method in noncompact metric measure spaces with lower Ricci bounds.**
Accepted in COCV, 2022

**20. **

**21. **

**22. **

**23. **

**24. **