Primeira Prova de Teoria da medida Bacharelado em Matemática UFABC

Stefano Nardulli

21/07/2018

- 1. Encontrar um exemplo de uma medida σ -aditiva μ sobre uma σ -algebra \mathcal{A} tal que existe uma sequencia $A_n \in \mathcal{A}$ com $A_n \to A$, $A_{n+1} \subseteq A_n$ and $\inf\{\mu(A_n)\} > \mu(A)$.
- 2. Seja μ aditiva e finita, sobre uma σ -algebra \mathcal{A} . Show that μ is σ -aditive, se e só se é continua a respeito de sequências não crescentes de conjuntos.
- 3. Seja μ uma medida finita sobre (X,\mathfrak{M}) , dizemos que $x \in X$ é um **âtomo de** μ , se $\{x\} \in \mathfrak{M}$ e $\mu(\{x\}) > 0$. Denotamos o conjuntos do âtomos de μ com $A_{\mu} := \{x \in X | \{x\} \in \mathfrak{M}, \mu(\{x\}) > 0\}$. Provar que A_{μ} é enumerável. Mostrar o mesmo resultado para toda medida μ σ -finita. Fornecer um exemplo de um espaço de medida para o qual esta propriedade não pode ser satisfeita.
- 4. Seja (X, \mathfrak{M}, μ) um espaço de medida finita. Dizemos que μ é **difusa**, se para todo $A \in \mathfrak{M}$ com $\mu(A) > 0$ existe $B \subseteq A$ com $0 < \mu(B) < \mu(A)$. Mostrar que se μ é difusa então $\mu(\mathfrak{M}) = [0, \mu(X)]$.
- 5. Mostrar que se X é um espaço métrico separável e \mathcal{B} é a σ -algebra de Borel. Então uma medida σ -aditiva $\mu: \mathcal{B} \to [0, +\infty[$ é difusa se e só se $A_{\mu} = \emptyset$.

6.

Definição 1. Seja (X,d) um espaço métrico. Dizemos que $A,B \in \P(X)$ são **conjuntos separados**, se $d(A,B) := \inf\{d(a,b)|a \in A,b \in B\} > 0$. Dizemos que uma medida μ sobre X é **aditiva sobre conjuntos separados**, se $\mu(A \cup B) = \mu(A) + \mu(B)$, sempre que A e B são conjuntos separados.

Provar o seguinte teorema.

Teorema 0.1 (Critério de Carathéodory). Seja (X, d) um espaço métrico. Se μ é uma medida exterior aditiva sobre conjuntos separados, então todo conjunto de Borel é μ -mensurável.

7. Enunciar e demonstrar o Teorema de convergência monotona de Lebesgue.

- 8. Enunciar e demonstrar o Lema de Fatou.
- 9. Enunciar e demonstrar o Teorema de convergência dominada de Lebesgue.
- 10. Como consequencia do Teorema de convergência dominada de Lebesgue podemos provar que, se $\varphi: X \to \overline{\mathbb{R}}$, é μ integrável. Então $\forall \varepsilon > 0$, δ_{ε} tal que $\forall A \in \mathfrak{M}$ com $\mu(A) < \delta_{\varepsilon}$ resulta $\int_{A} |\varphi| d\mu \leq \varepsilon$.
- 11. Seja (a_n) uma sequencia com $a_{\in}]0, +\infty[$ tal que $\sum_n a_n = +\infty, \lim_{n \to +\infty} a_n = 0$, mostrar que para toda $\varphi: X \to [0, +\infty]$, mensurável existe $A_n \in \mathfrak{M}$ tal que $\varphi = \sum_n a_n \chi_{A_n}$.
- 12. Definir a integral de Lebesgue em termos da função de repartição e mostrar a sua relação com a definição dada em termos de integral de funções simples.