DEFINABLE ENDOFUNCTIONS IN
UNIFORMLY LOCALLY FINITE STRUCTURES
©2009–2012 Vinicius Cifu Lopes

We prove that definable endofunctions in uniformly locally finite structures enjoy a form of the pigeonhole principle.

Surjectivity-injectivity of definable endofunctions. Fix a structure A in some first-order, many-sorted language, and write $\text{Def}(A)$ for the category of sets and functions which are definable with parameters in A. Two properties of endomorphisms (that is, arrows of the form $X \to X$) in $\text{Def}(A)$ can be of interest:

(S\RightarrowI) Every surjective definable endofunction is injective.

(I\RightarrowS) Every injective definable endofunction is surjective.

We first observe that (S\RightarrowI) implies (I\RightarrowS), and they are equivalent in the presence of definable Skolem functions. For, let $g: X \to X$ be definable and injective; take $f: X \to X$, $f(x) = g^{-1}(x)$ if $x \in g[X]$, or $f(x) = x$ otherwise; then f is definable and surjective, so it is injective by (S\RightarrowI); use that to show g surjective. Next, let $f: X \to X$ be definable and surjective; take a definable “choice map” $g: X \to X$, i.e., $g(x) \in f^{-1}[x]$ for every $x \in X$; then g is injective, so it is surjective by (I\RightarrowS); hence f is injective.

One can show that (I\RightarrowS) is equivalent to a weak form of additive cancellation in the Grothendieck semiring of $\text{Def}(A)$. This is the collection of classes of isomorphism of the category, endowed with natural operations of addition and multiplication.

Transferring the relevant question to a finite structure, as we will do below, is the same approach that one can take to investigate for pseudofiniteness. In fact, (S\RightarrowI) holds in pseudofinite structures, and J. Ax, *Injective endomorphisms of varieties and schemes*, Pacific J. Math. 31 (1969), pp. 1–7, has famously used pseudofiniteness to show that algebraically closed fields satisfy (I\RightarrowS).

We establish (S\RightarrowI) for the eq-expansion of any vector space over any division ring, and more generally (I\RightarrowS) for any strongly minimal group, in *Euler characteristics for strongly minimal groups and the eq-expansions of vector spaces*, J. Symbolic Logic 76 (2011), pp. 235–242.

In uniformly locally finite structures. Recall that a structure B is uniformly locally finite if any finitely generated substructure of B is finite and its cardinality is bounded by a natural number depending only on B and the cardinality of the generator set.

We will prove: “Assume that any structure which is definable in A is uniformly locally finite. Then the property (S\RightarrowI) holds in A.”

Start with $f: X \to X$ which is surjective and definable in A. Then the structure (X, f), with one sort and one unary function symbol, is uniformly locally finite. In particular, there is $N \in \mathbb{N}$ such that any $x \in X$ satisfies $|\{x\}| \leq N$. Recall that, in this case, $\langle x \rangle = \{f^k(x) \mid k \in \mathbb{N}\}$. Given $p \in X$, we will first prove that $f^{-1}[p] \subseteq \langle p \rangle$. Fix $x_0 \in f^{-1}[p]$ and $x_{n+1} \in f^{-1}[x_n]$ for $n \in \mathbb{N}$. Since $\langle x_N \rangle$ has at most N elements, but it contains x_0, \ldots, x_N, there are $0 \leq n < m \leq N$ with $x_n = x_m$.

Take $k = m - n - 1 \geq 0$, thus $x_k = f^{n+1}(x_m) = f^{n+1}(x_n) = p$, and hence $x_0 = f^k(x_k) = f^k(p) \in \langle p \rangle$.

Now we have $\langle p \rangle \subseteq f(\langle p \rangle)$ by iterations of f, thus $f(\langle p \rangle) = \langle p \rangle$. We obtained a surjective endofunction $f|_{\langle p \rangle}: \langle p \rangle \to \langle p \rangle$ on a finite set, hence it must be injective.

Finally, suppose there are $a, b \in X$ with $f(a) = f(b)$. Take $p = f(a)$. Then $a, b \in f^{-1}[p] \subseteq \langle p \rangle$, and $f|_{\langle p \rangle}$ is injective, so $a = b$. This finishes the proof.

Conclusion. In turn, if we consider a structure in which all interpretable structures are uniformly locally finite, then every surjective interpretable endofunction is injective. For example, every structure interpretable in an ω-categorical structure is again ω-categorical, and ω-categorical structures are uniformly locally finite, see Cor. 7.3.2 in W. Hodges, *Model Theory*, Cambridge Univ. Press, 1993.

Further information. Contact me via vinicius@ufabc.edu.br. At the time, my research was funded by the Brazilian government through a CAPES–Fulbright scholarship, and by the University of Illinois at Urbana-Champaign through graduate assistantships.